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Optical Solitons in N-Coupled Higher Order Nonlinear Schrödinger Equations
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We consider the coupled higher order nonlinear Schrödinger (CHNLS) equations which gover
the propagation of the fields in a birefringent fiber with all higher order effects like the third order
dispersion, Kerr dispersion, and stimulated Raman scattering. We generalize the2 3 2 Ablowitz-
Kaup-Newell-Segur method to the5 3 5 eigenvalue problem and construct the Lax pair. The exact
soliton solutions are explicitly obtained using the Darboux-Bäcklund transformation. A similar case
of study is extended to three coupled HNLS equations and hence generalized toN-coupled equations.
[S0031-9007(97)04790-X]
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The next generation of optical communication is defi
nitely going to be revolutionized by the all soliton com
munication link. In 1973, the results of Hasegawa an
Tappert [1] proved that the major constraint in the op
tical fiber, namely, the group velocity dispersion (GVD
could be exactly counterbalanced by the self-phase mo
lation (SPM). SPM is the dominant nonlinear effect i
silica fibers due to the Kerr effect. The theoretical re
sults of Hasegawa and Tappert [1] were greatly suppor
by the experimental demonstration of optical solitons b
Mollenaueret al. [2] in 1980.

For handling more channels, it is necessary to tran
mit ultrashort soliton pulses at a high bit rate. In 198
Mitschke and Mollenauer [3] reported that the ultrasho
soliton pulses (USP) suffer from self-frequency shift due
Raman effect. The USP not only suffer from Raman effe
but also from third order dispersion (TOD) and Kerr dis
persion (otherwise called the self-steepening) [4–7]. No
mally, the temporal broadening due to TOD will be ver
negligible when compared to GVD. But, a considerab
amount of asymmetrical broadening in the time doma
will be produced by TOD for USP. The Kerr disper
sion is due to the intensity dependence of group velo
ity. This forces the peak of the pulse to travel slower tha
the wings, which causes asymmetrical spectral broaden
of the pulse. Raman effect gives self-frequency shift
the pulse. The self-frequency shift is a self-induced re
shift in the pulse spectrum arising from stimulated Ram
effect: the long wavelength components of the pulse e
perience Raman gain at the expense of the short wa
length components, resulting in an increasing redshift
the pulse propagates. It has been recognized that the s
frequency shift is potentially a detrimental effect in solito
communication systems due to the fact that the pow
fluctuations at the source translate into frequency fluc
ations in the fiber through the power dependence of t
soliton self-frequency shift and hence into timing jitter a
the receiver [8]. With all these effects, the wave propag
tion is governed by the higher order nonlinear Schröding
(HNLS) equation [4–7]. Recently, it has been shown th
the HNLS equation allows soliton-type propagation fo
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some particular choices of parameters and also obtained
exactN-soliton solutions [9]. One of the integrable case
was already considered by Sasa and Satsuma in 1991 [

For handling more channels, it is necessary to achie
wavelength division multiplexing (WDM) [11] using soli-
tons. In this case, at least two optical fields are to
transmitted. In 1974, Manakov proposed the coupled NL
equation [12]. In that, he derived the coupled NLS equ
tion from the NLS equation by considering the total fiel
comprising of two fields with left and right polarizations
In a similar way, we have proposed the coupled HNL
(CHNLS) equations and have shown that the system is
tegrable for a particular form using the Painlevé analys
[13]. The integrable form of CHNLS equations is

iq1Z 1
1
2 q1TT 1 sjq1j

2 1 jq2j
2dq1 1 i´fq1TTT 1

6sjq1j
2 1 jq2j

2dq1T 1 3q1sjq1j
2 1 jq2j

2dT g  0 ,

iq2Z 1
1
2 q2TT 1 sjq1j

2 1 jq2j
2dq2 1 i´fq2TTT 1

6sjq1j
2 1 jq2j

2dq2T 1 3q2sjq1j
2 1 jq2j

2dT g  0 .

(1)

Equation (1) is the coupled form of the HNLS equatio
considered by Sasa and Satsuma [10]. If we put the c
dition q2  0, Eq. (1) reduces to the completely integrab
HNLS equation. The coupled HNLS equation describe
by Tasgal and Potasek [14] is the coupled form of th
Hirota equation [15]. The equation considered in [14
includes higher order effects like the TOD and Kerr dis
persion, which is found to be the next hierarchy of the int
grable coupled NLS equation [16]. The CHNLS equatio
includes all the higher order effects like TOD, Kerr dis
persion, and the stimulated Raman effect. If we take t
limit of the mixed derivative (last two) terms tending to
zero, Eq. (1) reduces to the coupled HNLS equation d
scribed by Tasgal and Potasek [14].

In the concluding remarks of our paper [13], we hav
mentioned that it is very difficult to construct the linea
eigenvalue problem for Eq. (1). The main aim of thi
paper is to establish the complete integrability properti
of (1).
© 1998 The American Physical Society 1425
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In order to analyze Eq. (1), it is rather convenient t
introduce variable transformations,

E1st, zd  q1sT , Zd exp

Ω
2i
6´

µ
T 2

Z
18´

∂æ
,

E2st, zd  q2sT , Zd exp

Ω
2i
6´

µ
T 2

Z
18´

∂æ
, (2)

z  Z , t  T 2
Z

12´
.

Then, Eq. (1) is reduced to a coupled complex modifie
Korteweg–de Vries (KdV)-type equation,

E1z 1 ´fE1ttt 1 6sjE1j
2 1 jE2j

2dE1t 1

3E1sjE1j
2 1 jE2j

2dtg  0 ,
(3)

E2z 1 ´fE2ttt 1 6sjE1j
2 1 jE2j

2dE2t 1

3E2sjE1j
2 1 jE2j

2dtg  0 .
1426
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To construct the explicit Lax pair, we generalize th
2 3 2 Ablowitz-Kaup-Newell-Segur (AKNS) method [17]
to a 5 3 5 eigenvalue problem and obtain the Lax pai
for Eq. (3). It should be noted that the HNLS equatio
described by Sasa and Satsuma [10] admits a3 3 3
eigenvalue problem.

We generalize the2 3 2 AKNS method to the5 3 5
eigenvalue problem and we derive the Lax pair for th
coupled complex modified KdV equations (3) in the form

Ct  UC

Cz  VC
C  sC1 C2 C3 C4 C5dT (4)

U 

0BBBBB@
2il E1 Ep

1 E2 Ep
2

2Ep
1 il 0 0 0

2E1 0 il 0 0
2Ep

2 0 0 il 0
2E2 0 0 0 il

1CCCCCA ,
V 
8i´l3

5

0BBBBB@
24 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCCCCA 1 4´l2

0BBBBB@
0 E1 Ep

1 E2 Ep
2

2Ep
1 0 0 0 0

2E1 0 0 0 0
2Ep

2 0 0 0 0
2E2 0 0 0 0

1CCCCCA

2 2i´l

0BBBBB@
22A 2E1t 2Ep

1t 2E2t 2Ep
2t

2Ep
1t jE1j

2 sEp
1 d2 Ep

1E2 Ep
1Ep

2
2E1t E2

1 jE1j
2 E1E2 E1Ep

2
2Ep

2t E1Ep
2 Ep

1Ep
2 jE2j

2 sEp
2 d2

2E2t E1E2 Ep
1E2 E2

2 jE2j
2

1CCCCCA

2 ´

0BBBBB@
0 4AE1 1 E1tt 4AEp

1 1 Ep
1tt 4AE2 1 E2tt 4AEp

2 1 Ep
2tt

24AEp
1 2 Ep

1tt E1Ep
1t 2 Ep

1E1t 0 E2Ep
1t 2 Ep

1E2t Ep
2Ep

1t 2 Ep
1Ep

2t
24AE1 2 E1tt 0 Ep

1E1t 2 E1Ep
1t E2E1t 2 E1E2t Ep

2E1t 2 E1Ep
2t

24AEp
2 2 Ep

2tt E1Ep
2t 2 Ep

2E1t Ep
1Ep

2t 2 Ep
2Ep

1t E2Ep
2t 2 Ep

2E2t 0
24AE2 2 E2tt E1E2t 2 E2E1t Ep

1E2t 2 E2Ep
1t 0 Ep

2E2t 2 E2Ep
2t

1CCCCCA ,
e

r

nd
whereA  sjE1j
2 1 jE2j

2d.
It should be noted that the aboveV structure is different

from the usual AKNS eigenvalue problem for the couple
NLS equations where we have the3 3 3 matrix form for
V . This change is mainly due to the last term in Eq. (3
Using a different method, a similar type of eigenvalu
problem has been investigated by Newell [18].

Hence, the Lax pair confirms the complete integrabili
of Eq. (3) and thereby Eq. (1). From the knowledge
the Lax pair, one can construct the soliton solutions usi
various methods. Here, we use the Darboux-Bäcklu
transformation and obtain the explicit soliton solution.

To derive the Bäcklund transformation (BT) of Eq. (3
let us write down Eq. (4) in the coupled Riccati form
Introducing new variables (or pseudopotentials [19])

G1 
C1

C5
; G2 

C2

C5
; G3 

C3

C5
;

G4 
C4

C5
,

(5)

Eq. (4) yields
d

).
e

ty
of
ng
nd

),
.

G1t  22ilG1 1 E1G2 1 Ep
1G3 1 E2sG4 1 G2

1 d

1 Ep
2 , (6a)

G2t  2G1Ep
1 1 G1G2E2 , (6b)

G3t  2G1E1 1 G1G3E2 , (6c)

G4t  2G1Ep
2 1 G1G4E2 . (6d)

Now let us seek a transformation of variablesG1 ! G
0
1,

G2 ! G
0
2, G3 ! G

0
3, G4 ! G

0
4, l ! l0, E1 ! E0

1, and
E2 ! E0

2 which keeps the form of Eqs. (6) invariant. Th
simplest transformation can be tried by settingG

0
1  G1,

G
0
2  G2, G

0
3  G3, G

0
4  G4, l0  lp, looking for E0

1
andE0

2 in the form

E1 2 E0
1 

2isl 2 lpdGp
1G3

1 1 jG1j2 1 jG2j2 1 jG3j2
, (7a)

E2 2 E0
2 

2isl 2 lpdGp
1

1 1 jG1j2 1 jG2j2 1 jG3j2
. (7b)

Equations (7) define the Bäcklund transformation fo
Eq. (3). In that, the primed quantities correspond toN-
soliton solutions and the unprimed quantities correspo
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to the sN-1d soliton solutions. This means that, on th
basis of a known solution (seed solution) to Eq. (3), w
are able to find pseudopotentials (6), and making use
(7) we may then find the desired potentialsE1 and E2,
i.e., new solutions of Eq. (3).

For instance, the trivial solution of Eq. (3)E1  E2 
0 corresponds to the following pseudopotentials (wi
l  ib):

G1s0d  c1 exps2bt 2 8´b3zd ; (8a)

G2s0d  c2 ; (8b)

G3s0d  c3 ; (8c)

G4s0d  c4 , (8d)
wherec1, c2, c3, andc4 are arbitrary integration constants
So, we can find new solutions of Eq. (3) from (7) whic
is generated by the trivial one

E1s1d  2b
c3

cp
1

sechs2bt 2 8´b3zd , (9a)

E2s1d  2b
1
cp

1
sechs2bt 2 8´b3zd . (9b)

Expressions (9) give the single soliton solutions o
Eq. (3). Similarly using G1s0d, G2s0d, G3s0d, G4s0d,
E1s1d, andE2s1d, one can generate theN-soliton solutions
of Eq. (3) in a recursive manner.

For the simultaneous transmission of three fields in
fiber, one has to consider three coupled HNLS equatio
e
e
of

th

.
h

f

a
ns

in the form

iq1Z 1
1
2 q1TT 1 q1

3X
n1

jqnj2 1

i´

"
q1TTT 1 6q1T

3X
n1

jqnj2 1 3q1

√
3X

n1

jqnj2

!
T

#
 0 ,

iq2Z 1
1
2 q2TT 1 q2

3X
n1

jqnj2 1

i´

"
q2TTT 1 6q2T

3X
n1

jqnj2 1 3q2

√
3X

n1

jqnj2

!
T

#
 0 ,

iq3Z 1
1
2 q3TT 1 q3

3X
n1

jqnj2 1

i´

"
q3TTT 1 6q3T

3X
n1

jqnj2 1 3q3

√
3X

n1

jqnj2

!
T

#
 0 .

(10)
Using a similar type of transformation as that of Eq. (2)
one can reduce Eq. (10) to three coupled complex modifie
KdV-type equations. The eigenvalue problem for the
three coupled complex modified KdV equations can b
constructed as

Ct  UC

Cz  VC
C  sC1 C2 C3 C4 C5 C6 C7dT ,

(11)
where
U 

0BBBBBBBBBBB@

2il E1 Ep
1 E2 Ep

2 E3 Ep
3

2Ep
1 il 0 0 0 0 0

2E1 0 il 0 0 0 0
2Ep

2 0 0 il 0 0 0
2E2 0 0 0 il 0 0
2Ep

3 0 0 0 0 il 0
2E3 0 0 0 0 0 il

1CCCCCCCCCCCA
,

V 
8i´l3

7

0BBBBBBBBBBB@

26 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1CCCCCCCCCCCA
1 4´l2

0BBBBBBBBBBB@

0 E1 Ep
1 E2 Ep

2 E3 Ep
3

2Ep
1 0 0 0 0 0 0

2E1 0 0 0 0 0 0
2Ep

2 0 0 0 0 0 0
2E2 0 0 0 0 0 0
2Ep

3 0 0 0 0 0 0
2E3 0 0 0 0 0 0

1CCCCCCCCCCCA

1 2i´l

0BBBBBBBBBBB@

22B 2E1t 2Ep
1t 2E2t 2Ep

2t 2E3t 2Ep
3t

2Ep
1t jE1j

2 sEp
1 d2 Ep

1E2 Ep
1Ep

2 Ep
1E3 Ep

1Ep
3

2E1t E2
1 jE1j

2 E1E2 E1Ep
2 E1E3 E1Ep

3

2Ep
2t E1Ep

2 Ep
1Ep

2 jE2j
2 sEp

2 d2 Ep
2E3 Ep

2Ep
3

2E2t E1E2 Ep
1E2 E2

2 jE2j
2 E2E3 E2Ep

3

2Ep
3t E1Ep

3 Ep
1Ep

3 E2Ep
3 Ep

2Ep
3 jE3j

2 sEp
3 d2

2E3t E1E3 Ep
1E3 E2E3 Ep

2E3 E2
3 jE3j

2

1CCCCCCCCCCCA

1´

0BBBBBBBBBBB@

0 4BE1 1 E1tt 4BEp
1 1 Ep

1tt 4BE2 1 E2tt 4BEp
2 1 Ep

2tt 4BE3 1 E3tt 4BEp
3 1 Ep

3tt

24BEp
1 2 Ep

1tt E1Ep
1t 2 Ep

1E1t 0 E2Ep
1t 2 Ep

1E2t Ep
2Ep

1t 2 Ep
1Ep

2t E3Ep
1t 2 Ep

1E3t Ep
3Ep

1t 2 Ep
1Ep

3t

24BE1 2 E1tt 0 Ep
1E1t 2 E1Ep

1t E2E1t 2 E1E2t Ep
2E1t 2 E1Ep

2t E3E1t 2 E1E3t Ep
3E1t 2 E1Ep

3t

24BEp
2 2 Ep

2tt E1Ep
2t 2 Ep

2E1t Ep
1Ep

2t 2 Ep
2Ep

1t E2Ep
2t 2 Ep

2E2t 0 E3Ep
2t 2 Ep

2E3t Ep
3Ep

2t 2 Ep
2Ep

3t

24BE2 2 E2tt E1E2t 2 E2E1t Ep
1E2t 2 E2Ep

1t 0 Ep
2E2t 2 E2Ep

2t E3E2t 2 E2E3t Ep
3E2t 2 E2Ep

3t

24BEp
3 2 Ep

3tt E1Ep
3t 2 Ep

3E1t Ep
1Ep

3t 2 Ep
3Ep

1t E2Ep
3t 2 Ep

3E2t Ep
2Ep

3t 2 Ep
3Ep

2t E3Ep
3t 2 Ep

3E3t 0
24BE3 2 E3tt E1E3t 2 E3E1t Ep

1E3t 2 E3Ep
1t E2E3t 2 E3E2t Ep

2E3t 2 E3Ep
2t 0 Ep

3E3t 2 E3Ep
3t

1CCCCCCCCCCCA
,

1427
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From the above, it is clear that if the number of prop

agating fields is increasing, there will be a correspondin
increase in the order of theU andV matrices. By choos-
ing the properU matrix (for N  4, 5, . . . , N), one can
construct the correspondingV matrix using the general
AKNS method. But, in a simpler manner, it is possible t
write down theV matrix (forN  4, 5, . . . , N) by looking
at the symmetries seen in theV matrices forN  2, 3.

To obtain the Bäcklund transformation, we introduc
the variables

Gn 
Cn

C7
, n  1, 2, . . . , 6 (12)

and obtain the BT as

E1 2 E0
1 

2isl 2 lpdGp
1G3

1 1
6P

n1
jGnj2

,

E2 2 E0
2 

2isl 2 lpdGp
1G5

1 1
6P

n1
jGnj2

,

E3 2 E0
3 

2isl 2 lpdGp
1

1 1
6P

n1
jGnj2

. (13)

Similarly, the one soliton solution for the three couple
complex modified KdV equations can be generated as

E1s1d  2b
c3

cp
1

sechs2bt 2 8´b3zd , (14a)

E2s1d  2b
c5

cp
1

sechs2bt 2 8´b3zd , (14b)

E3s1d  2b
1
cp

1
sechs2bt 2 8´b3zd . (14c)

In a similar way, for four coupled HNLS equations
one can construct a9 3 9 eigenvalue problem, the cor-
responding BT, and a soliton solution. So, in genera
for N-coupled HNLS equations the Lax pair can b
constructed using thes2N 1 1d 3 s2N 1 1d eigenvalue
problem.

Thus, in this Letter, we have generalized the2 3

2 AKNS method to the5 3 5 eigenvalue problem to the
CHNLS equations. We have constructed the Lax pa
1428
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and the exact soliton solution using Darboux-Bäcklun
transformations. A similar procedure is extended for th
three coupled HNLS equations. Finally, the method i
generalized forN-coupled HNLS equations. Hence, with
these results, we have proved that the CHNLS equatio
that describe the wave propagation of two and highe
number of fields in a fiber system with all the higher orde
effects like TOD, Kerr dispersion, and stimulated Rama
effect will allow soliton-type pulse propagation. This will
help in achieving WDM using USP.
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