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Optical Solitons in N-Coupled Higher Order Nonlinear Schrédinger Equations
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We consider the coupled higher order nonlinear Schrodinger (CHNLS) equations which govern
the propagation of the fields in a birefringent fiber with all higher order effects like the third order
dispersion, Kerr dispersion, and stimulated Raman scattering. We generalizexth® Ablowitz-
Kaup-Newell-Segur method to thfe X 5 eigenvalue problem and construct the Lax pair. The exact
soliton solutions are explicitly obtained using the Darboux-Backlund transformation. A similar case
of study is extended to three coupled HNLS equations and hence generaliXedoopled equations.
[S0031-9007(97)04790-X]
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The next generation of optical communication is defi-some particular choices of parameters and also obtained the
nitely going to be revolutionized by the all soliton com- exactN-soliton solutions [9]. One of the integrable cases
munication link. In 1973, the results of Hasegawa andwvas already considered by Sasa and Satsuma in 1991 [10].
Tappert [1] proved that the major constraint in the op- For handling more channels, it is necessary to achieve
tical fiber, namely, the group velocity dispersion (GVD) wavelength division multiplexing (WDM) [11] using soli-
could be exactly counterbalanced by the self-phase moduens. In this case, at least two optical fields are to be
lation (SPM). SPM is the dominant nonlinear effect intransmitted. In 1974, Manakov proposed the coupled NLS
silica fibers due to the Kerr effect. The theoretical re-equation [12]. In that, he derived the coupled NLS equa-
sults of Hasegawa and Tappert [1] were greatly supportetion from the NLS equation by considering the total field
by the experimental demonstration of optical solitons bycomprising of two fields with left and right polarizations.
Mollenaueret al. [2] in 1980. In a similar way, we have proposed the coupled HNLS

For handling more channels, it is necessary to transfCHNLS) equations and have shown that the system is in-
mit ultrashort soliton pulses at a high bit rate. In 1986,tegrable for a particular form using the Painlevé analysis
Mitschke and Mollenauer [3] reported that the ultrashorf13]. The integrable form of CHNLS equations is
soliton pulses (USP) suffer from self-frequency shift due to ! 5 5 .

Raman effect. The USP not only suffer from Raman effectidiz + g1t + (lq11” + lg21%)q1 + ielgirrr +

but also from third order dispersion (TOD) and Kerr dis- 6(1¢11* + lg21)qir + 3q1(q:1* + 1g21P)7r] =0,
persion (otherwise called the self-steepening) [4—7]. Nor- 1 ) 5 )

mally, the temporal broadening due to TOD will be very 192z + 392t + (Iq1l” + 192%)q2 + ielgarrr +

negligible when compared to GVD. But, a considerable 6(1q11> + 1g21)q2r + 3g2(1g11* + 1g21*)7] = 0.
amount of asymmetrical broadening in the time domain 1)

will be produced by TOD for USP. The Kerr disper-

sion is due to the intensity dependence of group velocEquation (1) is the coupled form of the HNLS equation
ity. This forces the peak of the pulse to travel slower tharconsidered by Sasa and Satsuma [10]. If we put the con-
the wings, which causes asymmetrical spectral broadeningdjtion g, = 0, Eqg. (1) reduces to the completely integrable
of the pulse. Raman effect gives self-frequency shift taHNLS equation. The coupled HNLS equation described
the pulse. The self-frequency shift is a self-induced redby Tasgal and Potasek [14] is the coupled form of the
shift in the pulse spectrum arising from stimulated RamarHirota equation [15]. The equation considered in [14]
effect: the long wavelength components of the pulse exincludes higher order effects like the TOD and Kerr dis-
perience Raman gain at the expense of the short wavgersion, which is found to be the next hierarchy of the inte-
length components, resulting in an increasing redshift agrable coupled NLS equation [16]. The CHNLS equation
the pulse propagates. It has been recognized that the seificludes all the higher order effects like TOD, Kerr dis-
frequency shift is potentially a detrimental effect in soliton persion, and the stimulated Raman effect. If we take the
communication systems due to the fact that the powelimit of the mixed derivative (last two) terms tending to
fluctuations at the source translate into frequency fluctuzero, Eq. (1) reduces to the coupled HNLS equation de-
ations in the fiber through the power dependence of thecribed by Tasgal and Potasek [14].

soliton self-frequency shift and hence into timing jitter at In the concluding remarks of our paper [13], we have
the receiver [8]. With all these effects, the wave propagamentioned that it is very difficult to construct the linear
tion is governed by the higher order nonlinear Schrodingeeigenvalue problem for Eq. (1). The main aim of this
(HNLS) equation [4—7]. Recently, it has been shown thapaper is to establish the complete integrability properties
the HNLS equation allows soliton-type propagation forof (1).
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In order to analyze Eq. (1), it is rather convenient toTo construct the explicit Lax pair, we generalize the

introduce variable transformations, 2 X 2 Ablowitz-Kaup-Newell-Segur (AKNS) method [17]
—i 7 to a5 X 5 eigenvalue problem and obtain the Lax pair
Ei(t,2) = q:(T,2) eXP{@ <T - @)} for Eqg. (3). It should be noted that the HNLS equation

. 7 described by Sasa and Satsuma [10] admit8 & 3
Ex(t,2) = q2(T, 2) exp{—l <T - _>} (2) eigenvalue problem.

6¢ 18¢ We generalize the X 2 AKNS method to the5 X 5
7 eigenvalue problem and we derive the Lax pair for the
1 =27, t=T - 12¢ coupled complex modified KdV equations (3) in the form
Then, Eq. (1) i§ reduced to acouple_d complex modified \\5! z g% Vo= (U, U, Uy U, )T (4)
Korteweg—de Vries (KdV)-type equation, z
Ei. + e[Eyy + 6(E > + |E2)E), + —iA E, E' E, E
3E(IE* + |E2Y),] =0, —Ep A 000
) ) (3) U=|-E 0 ix 0 0 [,
Ey, + elExyn + 6(|E1| + |E2|9)Es + —E; 0 0 A O
3E(E* + |EY),] = 0. —E 0 0 0 iA
|
-4 0 0 0 O 0 E, E E, E
gien3| 0 1 000 —-Ef 0 0 0 0
V= 0 0 1 0 O|+4eX*l-E, 0 0 0 0
> Lo 0010 ~“Ei 0 0 0 0
0 0 0 0 1 -E, 0 0 0 O
_213 —Ey; _€Tt _*EZt _*E;i
—Ey, |]512|2 (E1)? E\E; EiEy
— 2ieA| —Ey,  Ei |E\* E\E, EE
—Ey E\E; E\E |E22|2 (E>)?
—Ey E\E, E{E; E; |Ef?
0 4AE| + E\,  4AE] + Ej, 4AE, + Eyy, 4AE; + E5,
_4AET - ETU EIETz - ETElt . 0 . EZETz - ETEZt E%:Eikr - ETE;
— & _4AE>1‘ - E}kn . 0 By E}(Elt - ELELI EZE}(I‘ - E}(Ezt E2E1t - E1E2Il 5
—4AE; — Eyy E\Ey — E2Ey E\Ey — ExEy ExEy — ErEy . 0 .
—4AE; — By E1Ey — EQEy E(Ey — EbEy, 0 EyEy — ExEy
whered = (|E;|* + |E2]?). ! Iy, = —2iAl + E\Ty + ET3 + Ey(I'y + T}
It should be noted that the aboVestructure is different + g (6a)
from the usual AKNS eigenvalue problem for the coupled 2>
NLS equations where we have tAex 3 matrix form for Iy = —TYEf + T'1LE;, (6b)
V. This change is mainly due to the last term in Eq. (3). _
Using a different method, a similar type of eigenvalue T DBy + TiEs (6¢)
problem has been investigated by Newell [18]. Ty = —TE; + T T4E;. (6d)

Hence, the Lax pair confirms the complete integrabilityNow let us seek a transformation of variabEs— I,
of Eq. (3) and thereby Eq. (1). From the knowledge ofr, — 1}, Iy = T, Iy — I}, A — X, E; — E|, and
the Lax pair, one can construct the soliton solutions using:, — E’ which keeps the form of Egs. (6) invariant. The
various methods. Here, we use the Darboux-Backlundjmplest transformation can be tried by settiig= T,
transformation and obtain the explicit soliton solution. 1) =1, '} = I';, T = T4, A’ = A*, looking for E]
To derive the Backlund transformation (BT) of Eq. (3), and E} in the form

let us write down Eq. (4) in the coupled Riccati form. 2i(A — AT
Introducing new variables (or pseudopotentials [19 — E| = 1=
g " (\I,p p N [ ]) El El 1+ |rl|2 ¥ |F2|2 + |I~3|2» (7a)
=1 T, = =2; ry=—2; / 2i(A = ALY
E, - FE, = . 7b
vs oy vs S R TR e TN R
r,=—, Q) Equations (7) define the Bé&cklund transformation for
Vs Eqg. (3). In that, the primed quantities correspondvto
Eq. (4) yields soliton solutions and the unprimed quantities correspond
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to the (N-1) soliton solutions. This means that, on thein the form

basis of a known solution (seed solution) to Eq. (3), we | 3
are able to find pseudopotentials (6), and making use of iqiz + sqitr + 1 Z lgnl® +
(7) we may then find the desired potentids and E», _ 3 ;= _
i.e., new solutions of Eq. (3). . 2 2 _
For instance, the trivial solution of Eq. (&), = E, = te| qurrr + 6(]1T’; lanl™ + 301 ’; i . 0,
0 corresponds to the following pseudopotentials (with | 3 -
A =iB): ig2z + 39 + g2 Z gul* +
I'1(0) = ¢ exp2Bt — 8eB%z); (8a) _ ; o i
[2(0) = c2; @8b)  ie| qarrr + 6q2r Y lgul® + 3(12(2 anlz) =0,
n=1 n=1 -
T5(0) = c3; (8¢) 1 s, )
iq3z + 5 + +
r4(0) = ¢y, (8d) 1q3z 7493TT q3 ,; |Qn|
wherecy, ¢3, ¢3, andcy are arbitrary integration constants. B 3 3 7
So, we can find new solutions of Eq. (3) from (7) which ie| gsrrr + 647 Z lgnl? + 3Q3<Z anlz) =0.
is generated by the trivial one L n=1 n=1 T
Ei(1) = 2B = secli2Bt — 8¢B°z), 9a . o .
1) B c 2p o) (%a) Using a similar type of transformation as that of Eq. (2),

1 ; one can reduce Eq. (10) to three coupled complex modified
Ex(1) =28 ;secmzﬁz — 8eB7z). (9b)  KdV-type equations. The eigenvalue problem for the
! three coupled complex modified KdV equations can be

Expressions (9) give the single soliton solutions Ofconstructed as

Eq. (3). Similarly using I'(0), I'2(0), I's(0), I'4(0),

E(1), andE, (1), one can generate thé-soliton solutions v, =UV¥ _ T

of Eq. (3) in a recursive manner. v, =VV¥ W= () W W5 Wy Ws W W)
For the simultaneous transmission of three fields in a (12)

fiber, one has to consider three coupled HNLS equati?nwhere

*

—iA E, El E, E, E; Ej
—Ef iA 0 0 O 0 O
-E, 0 iA 0 0 0 O
U=|-E5 0 0 iA 0 0 0|,
-E, 0 0 0 iA 0 O
—-E; 0 0 O 0 ix O
—-E3; 0 0 0 0 0 i\
-6 00 00 0O 0 E, E E, E E; E;
0 1 00O0O0O -Ef 0 0 O O 0 O
giexs| © 01 0000 -E;, 0 0 0 0 0 O
V= 0 00 1 00 O|+4eX*l-E5 0 0 O O O O
1o 000100 “E, 0 0 0 0 0 0
0 00 0O0T1O -E; 0 0 O O 0 O
0 00 0O0TO0°1 -E3; 0 0 0 0 0 O
—2B _Elt _Eikz _E2t _E;t _E3t _E§t
—Ei, |E\* (EY) E\E, E{E; E\E; E|E;
—E, Ei |E\* EE, EE5 EE; EE;
+ 2ieA| —E;, E\E5 EVE, |E)|* (E5)?* E3E; E>E;
—Ey EE, EE, E |E? EE; EE;
—E5 E\E5 E{E; EE; EE; |Es|* (E3)
—Ey E\Es E{E; EEs E3E; E5  |Ef
0 4BE, + E\, 4BE] + Ej, 4BE, + Ey, 4BE; + E;, 4BE; + Esy 4BE; + E;,
_4BET_ETZI EIETt_ETElr 0 EZETt_ETEZI E;ET,—ETEZ E3ET,—ETE3, E;ET,—E;E;
—4BE, — Eiy 0 E'E\, — E\E\;, E)E,, — E\Ey E>E,, — E\Ey, E;E\, — E\E;, E3E| — E|E3
+e _4’BE;_E;U EIE;t_E;Elt ETE;Z_E;ETt EZE;t_E;EZt 0 E3E§,—E;E3, E:E;t_E;E:t s
—4BE, — Eyy  E\Ey — E2Ei, EVEy — E2Ey, 0 E>sEy — E2Ey  EsEy — EsEy  E3Ey — EXE5,
—4BE; — E3, E\E3 — EiEy, E\E; — E5E), E;E3 — E5Ey E;E3 — E3E;  EsE; — E3E, 0
—4BE;y — E3,  E\Ey, — EsE\, E{Es, — E3E\, EyE3 — EzEy, E E3 — E3E5, 0 E3Ey — EsE5,
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whereB = i=1 |E,|%. and the exact soliton solution using Darboux-Backlund
From the above, it is clear that if the number of prop-transformations. A similar procedure is extended for the
agating fields is increasing, there will be a correspondinghree coupled HNLS equations. Finally, the method is
increase in the order of the andV matrices. By choos- generalized fotv-coupled HNLS equations. Hence, with
ing the properU matrix (for N =4, 5,...,N), one can these results, we have proved that the CHNLS equations
construct the corresponding matrix using the general that describe the wave propagation of two and higher
AKNS method. But, in a simpler manner, it is possible tonumber of fields in a fiber system with all the higher order
write down theV matrix (forN = 4, 5,...,N) by looking  effects like TOD, Kerr dispersion, and stimulated Raman

at the symmetries seen in tivematrices forN = 2, 3. effect will allow soliton-type pulse propagation. This will
To obtain the Backlund transformation, we introducehelp in achieving WDM using USP.
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