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Big Incoherent Solitons
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We give a classical geometric optics description of incoherent solitons—those launched by a diffuse
source. This method is intuitive, advances predictions such as the existence of solitons of arbitrary cross
section, and importantly, it provides a simple (universal) analytical description for the incoherent soli-
tons of any nonlinear medium. Previously, analytical results were known for the lnI nonlinearity only.
[S0031-9007(98)05343-5]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Jx
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Solitons are waves that remain localized as they trave
a uniform nonlinear medium, whereas they would diffus
in a linear medium. In optics [1–3], they are candidates
building blocks for a potential all-optical technology wher
light guides and manipulates light. Significantly, Mitche
and Segev [4] have recently shown that solitons can
launched by an incandescent light bulb rather than t
usual high power laser. We now give a classical geomet
optics description of such solitons which leads to analytic
results for any nonlinear medium.

The refractive indexnsxd of a nonlinear medium de-
pends on the intensityIsxd of the illuminating beam
through the relationn ­ nsId, wherex is the spatial po-
sition. Accordingly, it is possible for a beam to create i
own waveguidensxd [1]. The self-consistency relation,
nsxd ­ nhIsxdj, provides a mathematical procedure for ob
taining analytical solutions [5].

Traditionally spatial solitons have been considered
one mode of their induced waveguide [1] but, crucial
our argument, it was recently shown that they could
two or more modes [6,7]. This core idea, taken wit
self-consistency [5,7], can be nicely generalized [8]
describe incoherent solitons. However, the modal meth
while exact and general, is rather mathematical wh
many modes are involved and to date analytical results
limited to incoherent solitons of the lnI nonlinearity [9,10].
But, in analogy to coherent solitons [11], the appare
mathematical complexity is not fundamental to incohere
solitons themselves, but rather it is a consequence
the particular limits and models chosen. Accordingl
we now concentrate on highly incoherent (multimode
solitons with a view towards simplicity. Such soliton
have actually been observed in recent seminal expe
ments [4].

Light spreads from an incoherent source because of
diffuse irradiation and not because of diffraction. Now,
is well documented [12] that geometric optics provides a
elegant and accurate description of diffusely illuminate
multimoded waveguides. Because highly incoherent so
tons induce such waveguides, they must also be desc
able by geometric optics. We next demonstrate this, fi
with an idealized example to convey the physics.
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Consider an incoherent source, of radiusr, lying in the
x, y plane, whose intensityIsrd is uniform along its surface
at every radial positionr . Light is emitted equally from
each point of the source in a cone of anglesu up to umax,
whereu is the inclination to thez direction. This source
induces a step profile (linear) waveguide characterized
n ­ nsId for radial positionr , r and byn ­ ns0d ­ n0

for r . r. Such a waveguide is well known [12] to
trap all rays emitted from the source provided the ra
undergo total internal reflection from the internal interfac
This occurs when the maximum angleumax of irradiance
equals ucsId ­ cos21hn0ynsIdj, the complement of the
usual critical angle for the induced waveguide, whe
u2

c sId > dn2yn2
0, dn2 ­ n2sId 2 n2

0, assumingnsId > n0
as in practice. Accordingly, a circularly symmetric bea
of uniform intensity that emits radiation in a cone of angl
up toucsId is a soliton because it self-consistently induc
a (linear) waveguide which then propagates the light be
uniformly through space. The identical argument appl
for solitons of arbitrary symmetry in cross section.

The above idealized source conveys much of t
essential physics in the geometric optics approach, an
suggests that incoherent solitons of arbitrary cross sec
exist in any nonlinear medium. Now suppose that t
above source intensityIsrd is any (arbitrarily) smoothed
out step function withIsrd ! 0 asr ! `. The nonlinear
induced waveguide now has a graded refractive ind
profile nsrd ­ nhIsrdj. In analogy with a step profile
waveguide, all rays emitted from each radial positionr
of the source are trapped provided again thatumax ­ uc,
but uchIsrdj now depends on the radial positionr and
is obtained by replacingnsId in the above example by
nhIsrdj. In other words, the incoherence or equivalen
the cone of radiation from each point of the sour
contracts from its maximum at positions whereI is
maximum to zero whereI ­ 0.

For any beam to be a stationary soliton, it must obey
self-consistency relation that it is guideduniformly along
the waveguide it induces. Clearly, this places a constra
on the incoherence, i.e., on the allowed distribution
rays radiated diffusely from each positionr in the beam’s
cross section. We characterize this distribution by t
© 1998 The American Physical Society
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ray density functionDhr, uj. Now it is a well known
consequence of Liouville’s theorem [13] that the densi
D of rays is uniform along any ray path. It then follow
that D can be any function of the ray invariant if the
beam is to be uniform along its induced waveguid
The invariant for trapped rays traveling along an axial
uniform waveguide, characterized bynsrd, is given by the
generalized Snell’s law [12] at any axial distancez:

b ­ nsrd cosu . (1)

Accordingly, the necessary incoherence to produce
stationary beam is obtained whenD is any function ofb,
i.e.,D ­ Dsbd. We next link the beam intensity toDsbd
by recognizing that the sum of all rays emitted at positio
r in the beam’s cross section must equal the intensity
Isrd. Thus,

Isrd ­ 2p
Z ucsrd

0
Dsbd sinudu ­

2p

nsrd

Z nsrd

n0

Dsbddb ,

(2)

wherensrd depends onI because the induced waveguid
profile is n ­ nhIsrdj. Now, by differentiating Eq. (2),
we find that the incoherence necessary to be a station
soliton in any specified nonlinear mediumnsId is Dsbd ­
s1y2pd h≠sIndy≠nj with n evaluated atb.

Here n0 , b , nhIsrdj or equivalently 0 , u ,

uchIsrdj. The incoherence is zerosD ­ 0d for u .

uchIsrdj. But, in practicensrd > n0, so thatuc is small.
Accordingly the incoherenceD required for a beam to be
a soliton, i.e., the necessary distribution of rays radiat
diffusely at each point in the beam cross section is giv
by the simple universal expression

Dsbd > sn0y2pd s≠Iy≠ndjn­b , (3)

taken together withb2 2 n2
0 ­ n2scos2u 2 cos2ucd >

n2
0fu2

chIsrdj 2 u2g. Hereu2
c sId > hn2sId 2 n2

0jyn2
0. This

result holds for arbitrary beam shape and cross sectio
symmetry. Given any nonlinearitynsId, Eq. (3) together
with the expression forb2 2 n2

0 provides the necessary
incoherence to be a soliton. The incoherenceDhu, Isrdj
depends on radial positionr through intensityIsrd. It is
unnecessary to preserve this implicit dependence onr, so
we takeDsu, Id, with u the direction of radiation.

Before providing some examples it is noteworth
to recall that the intensity profileIsx, yd of stationary
coherent solitons is dictated by the nonlinearitynsId,
and it must be circularly symmetric [7]. Whereas w
have found that stationary incoherent solitons can ha
any intensity profileIsx, yd with the nonlinearity instead
setting the necessary diffuse irradiation at each position
the soliton cross section.

As a first example we consider the familiar cubic (Ker
nonlinearity for whichn2 ­ n2

0 1 aI, with a a material
constant. From Eq. (3) we find that the soliton must ha
a uniform cone of irradiance0 , u , ucsId as specified
by Dsu, Id ­ n2

0ypa at each intensity in the soliton
cross section. Recall from our introductory commen
ty
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that the cone of irradianceucsId is largest at positions
corresponding to the maximum value ofI and zero at
positions whereI is zero. While this incoherence may
seem contrived, it is, in fact, what is emitted from a lon
optical fiber of profile shapenhIsrdj when it is illuminated
by a conventional diffuse source [14].

Next we consider the incoherence necessary for bea
to be solitons of a saturated Kerr nonlinearity chara
terized byn2 ­ n2

0 1 aIys1 1 IyItd, whereIt is given
saturation intensity. This leads from Eq. (3) toDsu, Id ­
saI2

t ypn2
0dyfu2

M 2 u2
c sId 1 u2g2 with u

2
M ­ aItyn2

0 the
maximumu2

c possible. Here is an example where the re
quired irradiance at each intensity in the cross section
nonuniform inu.

Finally we consider a logarithmic saturating me
dium of the form n2 ­ n2

0 1 D lns1 1 IyItd, where
D ­ hn2sItd 2 n2

0jy ln 2 characterizes the strength of
the nonlinearity. If beams are to be solitons in such
medium, the irradiance at each intensityI is found from
Eq. (3) to be

Dsu, Id ­ sItypu2
t dehu2

c sId2u2jyu2
t , (4)

whereu2
t ­ Dyn2

0. This incoherenceDsu, Id is illustrated
in Fig. 1 and is also qualitatively like that for the saturat
ing Kerr nonlinearity discussed above. For low intensitie
sI ø Itd, we observe thatn2 > n2

0 1 aI , uc ø ut, and
from Eq. (4) the irradianceD is again uniform as it is
for a Kerr medium. For large intensitiessI ¿ Itd, n2 >
n2

0 1 D lnsIyItd, and from Eq. (4)

Dsu, Id ­ hIypu2
t je2u2yu2

t , (5)

using u2
c ­ sdn2yn2

0d > u2
t lnsIyItd, where dn2 ­

n2sId 2 n2
0.

We anticipate that geometric optics is accurate whe
the beam spread due to diffractionud , lyr is insignifi-
cant compared to the maximum angle of diffuse irra
diation uc. In other words,Isrd must be a “smooth”

FIG. 1. The diffuse irradiationDsu, Id necessary for a beam
to be a soliton at two different intensities in the beam’
cross section, whereu is the direction of radiation. Here
Dt ­ Itypu2

t and ut ­
p

Dyn0 are given properties of the
logarithmic saturating nonlinearityn2 ­ n2

0 1 D lns1 1 IyItd.
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function with a “big” characteristic radiusr obeying
r ¿ ln0ysdn2d1y2. This is also the condition for a soli-
ton to be significantly incoherent or equivalently to b
multimoded. We now compare our method with the onl
known exact result for solitons of arbitrary incoherence i
the literature—that by Christodoulideset al. [9,10] for a
circularly symmetric soliton in then2 ­ n2

0 1 D lnsIyItd
nonlinearity. The exact result is given by replacingu2

t
with s1 2 r2

s yr2du2
t in our Eq. (5), wherers is the soli-

ton radius for a coherent soliton,rs ­ ly2p
p

D. The
error in geometric optics is less than 6% whenr . 3rs.

To conclude, we have provided the first classical ge
metric optics description of solitons. Incoherent (mul
timoded) solitons differ from the usual coherent (singl
mode) solitons in several respects: (1) They spread in
linear medium because of diffuse irradiation and not b
diffraction; (2) they have an arbitrary smoothed out inten
sity distribution and cross sectional symmetry, e.g., tw
circularly symmetric beams can travel in parallel; (3) the
can be described by classical geometric optics, leading
a simple universal analytical expression for the beam i
coherence required given any nonlinear mediumnsId, i.e.,
the necessary diffuse irradiationDsu, Id required for each
intensity I in the soliton cross section. We have not ad
dressed the consequence of having the inappropriate in
herence. But in analogy to earlier studies [15], it is pos
sible to show that Gaussian beams of a lnI nonlinearity
would then have a periodic behavior. Our findings ope
the door to a purely geometric optics treatment of solito
dynamics using only Liouville’s theorem for the invari-
ance ofD and the eikonal equation for the trajectories o
rays [16].

We appreciate suggestions by Colin Pask and tha
Moti Segev for sending us Refs. [8,10] prior to thei
publication. We are part of the Australian Photonic
Cooperative Research Centre.
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