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Big Incoherent Solitons
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We give a classical geometric optics description of incoherent solitons—those launched by a diffuse
source. This method is intuitive, advances predictions such as the existence of solitons of arbitrary cross
section, and importantly, it provides a simple (universal) analytical description for the incoherent soli-
tons of any nonlinear medium. Previously, analytical results were known for thadnlinearity only.
[S0031-9007(98)05343-5]
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Solitons are waves that remain localized as they travel in Consider an incoherent source, of radiydying in the
a uniform nonlinear medium, whereas they would diffusex, y plane, whose intensiti(r) is uniform along its surface
in alinear medium. In optics [1-3], they are candidates aat every radial positior. Light is emitted equally from
building blocks for a potential all-optical technology where each point of the source in a cone of anglesp t0 6 max,
light guides and manipulates light. Significantly, Mitchell where# is the inclination to the; direction. This source
and Segev [4] have recently shown that solitons can banduces a step profile (linear) waveguide characterized by
launched by an incandescent light bulb rather than the = n(I) for radial positionr < p and byn = n(0) = ng
usual high power laser. We now give a classical geometriéor » > p. Such a waveguide is well known [12] to
optics description of such solitons which leads to analyticatrap all rays emitted from the source provided the rays
results for any nonlinear medium. undergo total internal reflection from the internal interface.
The refractive indexa(x) of a nonlinear medium de- This occurs when the maximum anglg.x of irradiance
pends on the intensity(x) of the illuminating beam equalsé.(I) = cos {no/n(I)}, the complement of the
through the relatiom = n(I), wherex is the spatial po- usual critical angle for the induced waveguide, where
sition. Accordingly, it is possible for a beam to create its62(1) = 6n2/nj, 5n® = n2(I) — ng, assuming:(I) = ny
own waveguiden(x) [1]. The self-consistency relation, as in practice. Accordingly, a circularly symmetric beam
n(x) = n{l(x)}, provides a mathematical procedure for ob-of uniform intensity that emits radiation in a cone of angles
taining analytical solutions [5]. up toéd.(I) is a soliton because it self-consistently induces
Traditionally spatial solitons have been considered as (linear) waveguide which then propagates the light beam
one mode of their induced waveguide [1] but, crucial touniformly through space. The identical argument applies
our argument, it was recently shown that they could béor solitons of arbitrary symmetry in cross section.
two or more modes [6,7]. This core idea, taken with The above idealized source conveys much of the
self-consistency [5,7], can be nicely generalized [8] toessential physics in the geometric optics approach, and it
describe incoherent solitons. However, the modal methodsuggests that incoherent solitons of arbitrary cross section
while exact and general, is rather mathematical whemxist in any nonlinear medium. Now suppose that the
many modes are involved and to date analytical results argbove source intensity(r) is any (arbitrarily) smoothed
limited to incoherent solitons of the Imonlinearity [9,10].  out step function with (r) — 0 asr — . The nonlinear
But, in analogy to coherent solitons [11], the appareninduced waveguide now has a graded refractive index
mathematical complexity is not fundamental to incoherenprofile n(r) = n{I(r)}. In analogy with a step profile
solitons themselves, but rather it is a consequence afaveguide, all rays emitted from each radial position
the particular limits and models chosen. Accordingly,of the source are trapped provided again that = 6.,
we now concentrate on highly incoherent (multimoded)but 6.{I(r)} now depends on the radial positianand
solitons with a view towards simplicity. Such solitons is obtained by replacing(Z) in the above example by
have actually been observed in recent seminal experik{I(r)}. In other words, the incoherence or equivalently
ments [4]. the cone of radiation from each point of the source
Light spreads from an incoherent source because of itsontracts from its maximum at positions whefeis
diffuse irradiation and not because of diffraction. Now, it maximum to zero wheré = 0.
is well documented [12] that geometric optics provides an For any beam to be a stationary soliton, it must obey the
elegant and accurate description of diffusely illuminatedself-consistency relation that it is guidediformly along
multimoded waveguides. Because highly incoherent solithe waveguide it induces. Clearly, this places a constraint
tons induce such waveguides, they must also be descrilon the incoherence, i.e., on the allowed distribution of
able by geometric optics. We next demonstrate this, firstays radiated diffusely from each positierin the beam’s
with an idealized example to convey the physics. cross section. We characterize this distribution by the
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ray density functionD{r,#}. Now it is a well known that the cone of irradiancé.(/) is largest at positions
consequence of Liouville’'s theorem [13] that the densitycorresponding to the maximum value ffand zero at
D of rays is uniform along any ray path. It then follows positions wherel is zero. While this incoherence may
that D can be any function of the ray invariant if the seem contrived, it is, in fact, what is emitted from a long
beam is to be uniform along its induced waveguide.optical fiber of profile shape{/(r)} when it is illuminated
The invariant for trapped rays traveling along an axiallyby a conventional diffuse source [14].

uniform waveguide, characterized byr), is given by the Next we consider the incoherence necessary for beams
generalized Snell’'s law [12] at any axial distance to be solitons of a saturated Kerr nonlinearity charac-
B = n(r)cos . (1) terized byn® = ng + al/(1 + 1/1,), wherel, is given

Accordingly, the necessary incoherence to produce gstlt;r/ailgg)}r[];%ns_ltyé2('I;r)uile£§125\Zi(zrr]n HEI%?:(?’ZYIF%(Q)I)I;
t c t

stationary beam is obtained whénis any function ofg, maximumé? possible. Here is an example where the re-

.e.,D = l.)(.'B)' We next link the beam Intensity 'D(B). . _quired irradiance at each intensity in the cross section is
by recognizing that the sum of all rays emitted at position, - iniform ing

r in the beam’s cross section must equal the intensity at Finally we consider a logarithmic saturating me-
[(r). Thus, dium of the form n2 = nd + Aln(1 + I/1,), where

o zwjac(r)D(,B)sinedH _om ]n<r>D(5)dﬁ A = {n2(I,) — n§}/In2 characterizes the strength of
0 n(r) Ja, " the nonlinearity. If beams are to be solitons in such a
(2)  medium, the irradiance at each intensitys found from

wheren(r) depends o because the induced waveguide Ed. (3) to be

profile is n = n{I(r)}. Now, by differentiating Eq. (2), D(0.1) = (I./702)el02(D—6%/6 4

we find that the incoherence necessary to be a stationary ( ’2) Ui/ mbr)e ’ @
soliton in any specified nonlinear mediurty) is D(8) =  Where§? = A/nj. This incoherenc®(6, 1) is illustrated
(1/27){a(In)/dn} with n evaluated af3. in Fig. 1 and is also qualitatively like that for the saturat-

Here ny < 8 < n{I(r)} or equivalently 0 < # < ing Kerr nonlinearity discussed above. For low intensities
6.{I(r)}. The incoherence is zeréD = 0) for 6 > (I < I,), we observe that? = ng + al, 6, < 6, and
6.{1(r)}. But, in practicen(r) = ng, so thatd, is small. from Eq. (4) the irradianceéD is again uniform as it is
Accordingly the incoherencB required for a beam to be for a Kerr medium. For large intensitiég > 1), n> =
a soliton, i.e., the necessary distribution of rays radiatead + AIn(Z/1I,), and from Eq. (4)

diffusely at each point in the beam cross section is given D6.1) = {1/7702}8702/93 5)
by the simple universal expression ’ ! ’
D(B) = (no/2m) (91/dn)l,=p , @) using 62 = (8n%/n) = 67In(I/I,), where &n® =

2 2
. 2 2 _ 9 _ - fl(l)_n().
taken together with3 ny = n*(C089 — cosf,) - We anticipate that geometric optics is accurate when
nd[62{1(r)} — 6%]. Here6*(I) = {n*(I) — n3}/nd. This : - e

0L7¢ o ¢ 0/ 70- . _the beam spread due to diffractiép ~ A/p is insignifi-
result holds for arbitrary beam shape and cross section@l, ¢ compared to the maximum angle of diffuse irra-

symmetry. Given any nonlinearity(/), Eq. (3) together  giation .. In other words,/(r) must be a “smooth”
with the expression foB? — ng provides the necessary

incoherence to be a soliton. The incohered®, I(r)}
depends on radial positianthrough intensityl(r). It is
unnecessary to preserve this implicit dependence, @o
we takeD(6,I), with 6 the direction of radiation.

Before providing some examples it is noteworthy
to recall that the intensity profild(x,y) of stationary
coherent solitons is dictated by the nonlinearit{l),
and it must be circularly symmetric [7]. Whereas we
have found that stationary incoherent solitons can have
any intensity profilel (x, y) with the nonlinearity instead
setting the necessary diffuse irradiation at each position in
the soliton cross section.

As a first example we conszider the familiar cubic (Kerr)
nonlinearity for whichn?> = ng + «I, with o a material ) o
constant. From Eg. (3) we find that the soliton must hav OIGt')el' a Tsr(;emggfu:te &gdﬁgggg?’fgtgﬁgﬁsessa% f(t)rr]ea t?sgrrrl:’s
a uniform cone of iradiance < 6 < 0.(/) as specified  ¢ross section, wher@ is the direction of radiation. Here
by D(0,1) = n}/wa at each intensity in the soliton p, = I,/w6? and 6, = +/A/n, are given properties of the
cross section. Recall from our introductory commentdogarithmic saturating nonlinearity> = ng + Aln(1 + 1/1,).
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