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Phase Space Caustics in Multicomponent Systems
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As examples of quantum-“classical’ coupling systems, multicomponent systems are studied by
semiclassical evaluations of the Feynman kernels in the coherent-state representation. From the
observation of the phase space caustics, due to the presence of the internal degree of freedom (IDF),
two phenomena are explained in terms of the semiclassical theory: (1) The quantum oscillations of
the IDF induce quantum interference patterns in the Hushimi representation and (2) chaotic dynamics
destroys the coherence of the quantum oscillations. [S0031-9007(98)05336-8]

PACS numbers: 05.45.+b, 03.65.Sq, 03.65.Bz

Coupling a quantum system with a “classical” systemstudy the interference phenomena produced by a time
provides not only conceptual problems, e.g., the descripevolution in the Feynman kernel in the coherent state
tions of measurement processes only in terms of unirepresentation
tary time evolutions [1], but also practical problems, e.9., gt i 1. 1 1 1N — ¢ 100 n),—iHt/E| 11 1
interactions between electrons and nuclei in molecules [2— Kia"p"nsq'pin) = {a"p7. e '’ m >’(1)

4]. The difficulty that the classical concept is inapplica- )

ble for the “classical subsystem” in the coupled systenwhere H is a Hamiltonian,|¢p) is an EDF’s coherent
arises since the quantum and the classical subsystems Is#ate [7], which is a natural correspondent of a point in
come entangled [5] due to their interaction. However, itthe classical phase space, dnd is an IDF’s state vector.

is possible to apply semiclassical methods, which eluciNote that for the interference phenomenakify or more
date quantum dynamics in terms of classical dynamics, tgenerally, in the Hushimi representation of state vectors
quantum-classical coupling systems. It is natural to trea8], we have an established semiclassical interpretation
only the classical subsystem with semiclassical methodi], which will be employed below.

for quantum-classical coupling systems, though it is for- In order to investigate the influence of IDF’'s quantum
mally simple to apply a semiclassical method to the wholeoscillations on the EDF in a purified mannéhe two-
system [4]. state linear curve crossing model for an infinitely heavy

By applying a semiclassical theory only to the classicalparticle (for short, the heavy particle model) is studied.
subsystem, this Letter elucidates the following two phe-The IDF of this model is a two-level system, which is
nomena of the quantum-classical coupling systems: Théescribed by Pauli matrices. The heavy particle model is
first is the interference phenomena of the classical subsyslescribed by the Hamiltonian that does not have EDF's
tem due to the coupling to the quantum subsystem; thkinetic term
second is the destruction of the coherent quantum oscilla- H=V(G) = —ho,F§ + ho,J. (2)
tion of the quantum subsystem by the “chaotic” dynamic
of the classical subsystem. Note that the notion of chao

[ t [ int ly th h th ; : ; . )
In quantum dynamics can be introduced only throug . During a time evolution, the position of the EDF is an

semiclassical argument [6]. . . )
Throughout this Letter, multicomponent systems, e. .!nva_lrlant. On the contrary, the momentum of the EDF is
9 P y g L€x0|ted: In the absence df the EDF feels the force-F

electrons with a spin, and molecules that have quantize ©F) when the state of the IDF &) (I1)). The transition

electrons, are employed as simple quantum-classical cou- tix el Y ind th h ilati £ 1h
pling systems. A quantum multicomponent system coninatrix element/-induces the quantum osciiiation of the

sists of internal and “external’ degrees of freedom (IDFIDF between|T) and |l). Hence we lose the classical
and EDF, respectively): the IDF is a quantum subsysterﬂ?ICture of the force acting on the EDF. ,

i.e., the IDF is conveniently described by matrices that /" order to treat only the EDF se@classmally, an
have discrete indices rather than continuous indices; ofiective action for the EDF is introduced:

he Hamiltonian is scaled by the Planck constanin
rder to retain the independence of IDF’s time scales from

the other hand, the EDF can be regarded as a classical sys- S (q) = —ikInZ(q), 3)
tem. Namely, it is natural to employ continuous-valuedyhere the “influence functional’ [10] (cf. Ref. [11]) is
variables for describing the EDF. defined as

The emergence of the quantum interference phenomena I iV Ry
implies the complete breakdown of the classical picture. Z(q) = {n"le” " m’). 4)

However, we can understand the interference phenomery employing ST as a “classical action,” the Feynman
with a semiclassical argument. In the following, | will kernel K’ is expressed as a coherent-state path integral
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[12] of the EDF. The semiclassical theory employed hereghe zero points of the Jacobia®”(Q’)/dQ’. At a PSC,
is the stationary phase evaluation of the coherent-statiie semiclassical amplitude = (3Q”/0Q")~'/2 [15] di-
path integral [13]. A stationary phase point is specifiedverges. Furthermore, around the PSC, a pair of semiclas-
by the complex classical trajectofy, p) that obeys the sical trajectories that are specified by two valuesQdf

following Hamilton equation (symplectic mapping): appears for one value of the exit laloet, p’'). The contri-
o off L butions of the resultant multiple semiclassical amplitudes
p' =7 +5(@) g, 7 =7, (5) 1o the Feynman kernel are controlled by the Stokes phe-

where single- and double-primed quantities correspond t omena.[9,16.]: In Oone region ?f the’ plan”e, one of
the initial and the final times, respectively. Furthermore,t e semiclassical amplitudes is unphyglcal SO must be
the “entrance label(q’, p') and the “exit label(¢", p") e>§cluded._ The boundar_y of.t_he unphysical region in the
of K* specify the boundary condition ¢§, ) [13] 0 p_Iane is the Stqkes lines; in the other region, thg two
semiclassical amplitudes contribute at once. Accordingly,
P =(p —ig)/V2, 0" = (¢" — ip")/v2, (6) adestructive interference pattern emerges in the Hushimi
function [9]. Similarly, as in the case of single com-
where(Q, P) are defined by the linear canonical transfor-ponent systems, a PSC produced the interference pattern
mation P = (p — ig)/v2 andQ = (7 — ip)/v2 [14].  inFig. 1.
A solution of (5) and (6) can be specified by the initial  The dynamical origin of PSCs is the “folding” dynamics
value of Q. The corresponding semiclassical amplitudedue to nonlinearity, especially the chaos, for the case
is E(Q') exdiF(Q")/hi], whereE andF are the amplitude  of single component systems [9]. For multicomponent
and the “action,” respectively. Klauder expected that thesystems, we encounter a brand new source of PSCs, the
semiclassical Feynman kermilc has always only single |ogarithmic divergences o$*f due to the zeros of the
contribution of the semiclassical amplitude [13]. Actu- influence functionaZ. Indeed the interference pattern in
ally, in a very short time scale, this is the case. Howevergig. 1(b) is due to such a PSC. The general feature around
Adachi showed that in gener#lkc has multiple contribu- g zero point ofZ is explained by expanding around the
tions of the semiclassical amplitudes in order to describ§6r0 point [17,18] A zero of, produces a pair of PSC.
quantum interference phenomena [9]. One of the PSCs can be safely ignored, since the value
In Fig. 1, the “exact” evaluation and the semiclassicalpf |m F is too large to contribute to the Feynman kernel.
evaluation of the Hushimi functiok’|* are shown: For the other PSC, we must treat the Stokes phenomena.
the semiclassical theory reproduces the exact Hushimfhe Stokes lines in the’ plane are shown in Fig. 2.
function well. In the fOIIOWing, the semiclassical theory According to the Shape of these lines (lOOkS like an upside_
elucidates the structure of the Hushimi function. Sincegown 9 symbol), | call the PSC that is caused by zeros of
the initial condition of the IDF is|n) = [1), the center 7 \.pSC, in order to distinguish the conventional ones,

of the amplitude of the EDF moves upward in the phasgyhich is calleda-PSC, in the following argument.
space due to the diagonal elementFg of Eq. (2). At

the same time, there is a zero of the Hushimi function
at (¢, p) ~ (0,—0.8). Namely, we encountea quantum
interference phenomenon

In “single” component systems, quantum interference
patterns in the Hushimi representation have intimate corre-
spondence with phase space caustics (PSCs) [9], which are
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FIG. 2. Contour plot of ImF(Q’), the imaginary part of the
action forK'(¢"p" 1;4'p' 1). The logarithmic divergent point
of the effective action is indicated bll. The corresponding
pair of the PSC is indicated b@® and O. As is explained
FIG. 1. Contour plots of a Hushimi functiodK(gp 1; in the main text, it is safe to ignor®. Accordingly, only
q'p' D|? calculated by (a) the quantum theory and (b) thefor @, the Stokes lines (bold), which are part of the preimage
semiclassical theory. Parameters are= h/(27) = 0.25 [in- of the Stokes lines in th@"” plane, are drawn; Besides, the
dicated by a box in (@)]F = 1.0, J = 0.75, (¢’, p’) = (0,0), bold-dashed lines are the rest of the preimage. The unphysical
andr = 1.5. At the same time, the Stokes lines are indicatedregion is enclosed by the two Stokes lines that con@eetnd

by dashed lines in (b). H. Parameters are the same as in Fig. 1.
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The coherent quantum oscillation of the IDF produce thevhere 1; is the identity operator of the IDFT(p) =
zeros ofZ, as is explained below. With a given complex p2/2, and V(g) = 1,K cosq + hé.6K cosq + héd,J.
classical trajectory, the IDF is evolved by (g). Hence, This model is an extension of the standard mapping
during a time evolution, the value &f oscillates due to [21] to multicomponent systems. Corresponding to the
the quantum oscillation of the IDF. In particulaf,= 0  periodically time-dependent Hamiltonid#(r), we have a
holds when the state vector of the IDF is orthogonal toFloquet operatof/ = exd —iT(p)/hlexd—iV(§)/h].
|, which is specified by the exit label @ With a fixed In Fig. 3, the time evolutions of the regulak (= 0.4)
value of¢, we also encounter the zeros2fin varyingg. and the chaoticK = 2.4) cases of quantities concerning

We saw above that the effect of IDF's quantumto the IDF are shown. At the third step [indicated by
oscillation appears as-PSCs at EDF's semiclassical arrows in the figures), the quantum oscillation continues
dynamics. In turn, | will examine the effect of EDF’s in the regular case, but decays in the chaotic case. These
dynamics, especially the chaotic dynamics, w®SCs different short time behaviors, which will be explained
by employing the spin-kicked rotor(the kicked rotor below by the semiclassical theory, determine the long
for a spin% particle) [19,20]. The spin-kicked rotor is time behaviors of the system, i.e., the continuation of the
composed of a rotor as an EDF and a two-level system aherent oscillation in the regular case [Fig. 3(a)] and the
an IDF and is described by the following Hamiltonian:  destruction of the oscillation in the chaotic case [Fig. 3(b)].

In order to give a semiclassical interpretation of the
H) =T(p)i; + V(@)Z 8t — n), (7)  Phenomena mentioned above, the “full” Feynman kernel
P (q"p", n"|UN|q'p', ') is studied by “decomposing’” it by
a sequence of the IDF’s statgs, })—

KY(@"p"n"; {na 2’ ' 0"y = " p" | €| Ulgn=1) - (il UlmoNlq’ "), (8)

whereny = n’ andny = n’. The decomposition of thd we have to discuss the reconstruction of the full kernel
kernel facilitates the semiclassical analysis: For the fulfrom k). However, concerning to the quantum oscilla-
kernel, we have to solve the EDF’s equation of motion thation of the IDF in the short time scale, the reconstruction
is nonlocal in time [3]. On the contrary, féf)', the equa-  of the full kernel plays no particular role, as is confirmed
tion of motion is local in time. In evaluating)’ by a sta- from the numerical observations. Hence, | report only the
tionary phase method concerning to the EDF, similar to thesemiclassical study at’.

analysis of the heavy particle model (2), let us introduce an In evaluatingk) semiclassically, a “physical” region

effective potentialv¢'(¢) = ihInZ,(q), whereZ,(q) = D on the Q' plane (i.e., initial points of the complex
(nalexd—iV(q)/mllnu-1). ff'I'he intel[,action term of the trajectory) is introduced [9]:

EDF’s effective action isS5; = — > _, VT, Accord- i /

ingly, the classical equation of moitlioh for the complex D ={Qim F() = (IM Flewtort}, (10)
classical trajectory(q,,, p,,)}x is where F is the classical action fork). If Q' is
o off (— _ _ out of the regionD, the corresponding semiclassical
Po = Pu-1 = Vi (@-0/94. @ = Tu-1 F Pa- amplitudes are too small to contribute #). Hence

it is enough to count the contribution only frol for
At the same time, Klauder's boundary condition (6) isthe semiclassical Feynman kernel. For single component
imposed on the complex classical trajectory. systems, a perturbation analysis shows that the chaotic
In the semiclassical study d&)’, v-PSCs appear with dynamics make® contract exponentially fast around the

the similar mechanism mentioned above. Furthermoreglassically realizable trajectory, whose stability exponent
determines the rate of the contraction [18]. Although

the multicomponent systems do not have any classically

1 1

(a) (b) realizable trajectory, the similar contraction &f was
051/ 0.51 observed in the numerical experiment in the chaotic case
e 0 [Fig. 4(b)]. Furthermore, | observed that the contraction
05 Sz ol 4 Sz of D have different influences on two kinds of PSCs;
R — >l P on one handa-PSCs produced by the chaotic dynamics
51w 15 % 3 ®» 35 W 5 = » = catch up the contraction d@. Accordingly,a-PSCs have

_ _ significant influence on the Feynman kernel, similarly to
FIG. 3. Time evolutions of, = (4.), ¢ = y(d.)* +(6,)>,  the single-component case; on the other har@SCs fail
and P = \/(6.)* + (6,)* + (5.)* [20] of (a) the regular case to catch upD due to the contraction d®, thoughv-PSCs

(K = 04) and (b) the chaotic caseX(=2.4). The initial 56 strong influence in the regular case [Fig. 4(a)].
condition is l¢'p’. 1) with (g.p’) =(00.15). Parameters ... o of'the contraction @, the unphysical region
are i = 0.25, K = 1.0, and J = 0.75. In the long-time ’ phy 9
evolution, the oscillation of these quantities, especiallyis produced bw-PSCs become smaller. Furthermore, some

suppressed in the chaotic case (b). v-PSCs move into the unphysical region produced by
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