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Predicting Chaos Most of the Time from Embeddings with Self-Intersections
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Embedding techniques for predicting chaotic time series from experimental data may fail if
the reconstructed attractor self-intersects, and such intersections often occur unless the embedding
dimension exceeds twice the attractor’s box counting dimension. Here we consider embeddings
with self-intersection. When the dimensionM of the measurement space exceeds the information
dimensionD1 of the attractor, reliable prediction is found to be still possible from most orbit points.
In particular, the fraction of state space measure from which prediction fails typically scales as
´M2D1 for small ´ where ´ is the diameter of the current state’s neighborhood used for prediction.
[S0031-9007(98)05339-3]
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The observed dynamics of many systems cannot be
rived from first principles. In some cases, the underlyin
dynamics display low dimensional behavior, and attemp
are made to derive dynamical models from chaotic expe
mental data [1–3]. Phase space reconstruction techniq
have been successfully applied to model low-dimension
dynamics from observed data, revealing important dynam
cal properties, such as attractor dimensions and Lyapun
exponents, and allowing for short-term prediction of th
dynamics [4].

The phase space reconstruction of the system re
on the fact that time series data of generic observab
can be used to constructM-dimensional delay-coordinate
vectors (forming the so-called measurement space) t
correspondone to oneto phase space states of the syste
This result is backed by embedding theorems due
Takens [5] and Saueret al. [6]. The theorems in [6] state
that an embedding dimensionM larger than twice the
box counting dimensionD0 is sufficient to fully unfold
the attractor in the measurement space for ageneric
observablesM . 2D0d. However, favorable choices of
observables may unfold the attractor in smaller dimensi
M , 2D0, while for other observables the same attract
may self-intersect inM-dimensional measurement space

While some properties of the system, such as the
mensions of the attractor, can be obtained from the m
surement whether the attractor is embedded one to one
whether it intersects itself, the dynamics cannot be una
biguously reconstructed at points of self-intersection, a
dynamical modeling via embedding fails at these poin
1410 0031-9007y98y80(7)y1410(4)$15.00
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For prediction purposes self-intersections of the attrac
have therefore been avoided in the past, and techniq
have been developed to detect them and to find the requ
embedding dimensionM to avoid them. In particular, the
“false nearest neighbor” concept [2,7] has been succe
fully applied to construct dynamical models in numero
fields, and we note that this concept will be particular
relevant to our discussion in this paper [8].

In this Letter we investigate the quality of the predictio
when the attractor is not fully unfolded in the measureme
space, but has self-intersections. We find that, provid
the dimensionM of measurement space is larger than t
information dimensionD1 of the underlying dynamics,
a prediction based on the reconstructed self-intersec
attractor is possiblemost of the time.More specifically,
the measure of points on the attractor, for which t
prediction error exceeds any given error bound, vanis
according to the power law,´M2D1 , as the sizé of
the neighborhood [9] used for the prediction tends
zero. Therefore, for small enough́accurate prediction
is possible except on a small subset of the attractor e
if the attractor is not completely unfolded in measur
ment space.

This result might justify modeling the dynamics i
dimensionsM , 2D1 in certain situations where self
intersections occur. For example, this may be advan
geous for systems with large attractor dimension, wh
an embedding inM . 2D1 may not be feasible.

We consider a dynamical system defined on
k-dimensional phase spaceY by the mapyn11 ­ Fs ynd
© 1998 The American Physical Society
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for yn in Y . We assume that there exists an attractor
the system, whose natural measure isms yd, and whose
box counting and information dimension areD0 andD1,
respectively.

In a typical experiment, the phase spaceY may not be
observed directly. By constructing time-delay vectors
dimensionM from one observable or by measuringM in-
dependent observables, the phase spaceY is mapped to
anM-dimensionalmeasurement spaceX. We denote the
mapping from the system’sk-dimensional phase spaceY
to theM dimensional measurement spaceX by H, and we
call H themeasurement function(cf. Fig. 1). A measure-
ment of the system in the statey in Y yields a measured
vectorx ­ Hs yd in X. The natural measurems yd on the
attractor projected byH into X space is denotedmsxd.

Using data from the spaceX, we attempt to predict
the one-step future evolution of the dynamics underF.
For this purpose one technique [4,10] is to search t
data for previous statesxi in the measurement space tim
series that lie within a distancéof the present measured
statex ­ x0 (i.e., thosexi satisfyingkxi 2 x0k , ´) and
average over their known one-step evolution to obtain
estimatex´sx0d for the one-step evolution of the presen
measured statex0.

x´sx0d ­

P
´,x0

HsssFs yidddd
Ns´, x0d

. (1)

Here
P

´,x0
denotes the summation over all pointsxi such

that kxi 2 x0k , ´, andNs´, x0d is the number of such
points. For later use we introduce the notationB´sx0d
to stand for the set ofx such thatkx 2 x0k , ´. Thus
the sum in (1) is over thosexi in the ´ ball B´sx0d. As

FIG. 1. As observed with the measurement functionH, the
two pointsysad andysbd are both recorded as the same pointx0.
However, the images of these states under one-step evolu
are observed as two different pointsxsad ­ HsssFs ysaddddd and
xsbd ­ HsssFs ysbddddd. The prediction xsx0d is the weighted
average ofxsad andxsbd and lies on the line joining them.
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the length of the time series increases,´ can be chosen
smaller, and the limiting predicted valuexsx0d is then
defined by

xsx0d ­ lim
´!0

x´sx0d . (2)

If the measurement functionH is one to one at the point
x0, the predictionx´sx0d becomes more and more accurat
as ´ goes to zero. In fact, the error in the prediction
typically decreases linearly to zero as´ ! 0. If, however,
more than one phase space point in the originalY space
yields the same measured valuex0 (i.e., more than one
phase space point is mapped to the same pointx0), the
prediction error atx0 does not vanish aś ! 0.

Suppose, for example, thatHs yd ­ x0 has two possible
solutions fory, Hs ysadd ­ Hs ysbdd ­ x0 (cf. Fig. 1). Af-
ter one time step the pointsysad andysbd evolve toFs ysadd
and Fs ysbdd, respectively (Fig. 1). These two states ar
generally observed in measurement spaceX as two differ-
ent pointsxsad ­ HsssFs ysaddddd andxsbd ­ HsssFs ysbddddd. The
predicted valuexsx0d is now the average ofxsad andxsbd

weighted with the appropriate natural measuresmsad and
msbd of the two components ofH21sssB´sx0dddd near the points
ysad andysbd (see Fig. 1). If the natural measure at bot
points is comparablesmsad , msbdd, xsx0d lies far from
xsad andxsbd, and the prediction is inaccurate. If, however
the natural measures at both points are very different, e.
msad ¿ msbd, thenxsx0d lies close toxsad, and the predic-
tion is good with probabilitymsadysmsad 1 msbdd ø 1.

Assuming that there are enough time series data of t
orbit in X space, so that many points fall inB´sx0d, the
average over the time series data points may be replac
by the average with respect to the natural measuremsxd
on X, i.e.,

x´sx0d ­

R
H21sssB´sx0dddd HsssFs ydddd dms yd

msssB´sx0dddd
. (3)

This leads us to the following:
Definition 1.—Given a point x0 [ X with predic-

tion neighborhoodB´sx0d on the image of the attractor,
consider

ksDx´d2l ­

R
H21sssB´sx0ddddfHsssFs ydddd 2 x´sx0dg2 dms yd

msssB´sx0dddd
.

(4)

The finite ´ prediction errors´sx0d and the prediction
errorssx0d at x0 are defined by

s´sx0d :=
p

ksDx´d2l , and ssx0d ­ lim
´!0

s´sx0d , (5)

and a pointx0 is said to bepredictable,if

ssx0d ­ 0 . (6)

Conjecture 1.—The natural measure of predictable point
is generically one ifM . D1.
1411
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We now give a heuristic argument for Conjecture 1
Given a point on the attractor chosen at random wi
respect to the natural measurem, the measurement function
H can be regarded as placing a distant part of the attrac
in X essentially at random with respect to the initiall
chosen point. The probabilityp´ that the chosen point
falls in an´ cube with a large measure of another point o
the attractor chosen at random with respect to the natu
measure is the number of cubes of large measures,´2D1 d
divided by the number of cubes covering measureme
spaceX s,´2Md. As ´ ! 0 this probability p´ scales
like ´M2D1 .

The finite ´ prediction errors´sx0d is either propor-
tional to ´ for small ´ if x0 represents exactly one stat
in phase space, or else is finite and constant as´ tends to
zerof,Os1dg, if x0 is a point at which parts of the attrac
tor overlap. In the first case,x0 is predictable; the sec-
ond case comprises the points that are not predictable.
the second case, for any (not too large) fixed error bou
d . 0, the measure of points with finite prediction erro
s larger thand vanishes liké M2D1 if M . D1, thus jus-
tifying Conjecture 1. This leads directly to the following

FIG. 2. (a) Hénon mapsa ­ 1.4, b ­ 0.3d as observed with
time delay coordinates of the observablef. (b) Scaling of the
measuremss´ . dd of points with prediction error larger than
d . 0. The scaling exponent 0.74 is independent ofd and
in good agreement with the exponentM 2 D1 ­ 2 2 1.26 ­
0.74 given in Conjecture 2. (108 time series points were used.
1412
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Conjecture 2.—Let d . 0. The measuremss´ . dd
of points with finite prediction errors´ . d generically
scales in the following way: (i) WhenD1 . M, then
mss´ . dd , Os1d. (ii) When My2 , D1 , M, then
mss´ . dd , ´M2D1 , if attractor self-intersections occur
[if attractor self-intersections are absent,mss´ . dd ­ 0].
(iii) If D1 , My2, thenmss´ . dd ­ 0.

For D1 , My2, typically no boxes containing large
measure overlap. The number of boxes that contain
large measure scales liké2D1 , such that the number of
intersecting boxes is

Nx , ´2D1 3 p´ , ´M22D1 , (7)

which becomes less than one forMy2 . D1 and´ small
enough.

We have numerically verified the above conjectures fo
the Hénon [11] and the Ikeda map [12]. For the Héno
map we used standard parametersa ­ 1.4 and b ­ 0.3
and two-dimensional time delayssM ­ 2d of the observ-
able fsx, yd ­ x 1 1.2 sinf5sx 2 2ydg. The observable
was chosen because its time delay displays numero

FIG. 3. (a) Ikeda mapsa ­ 1.0, b ­ 0.9, k ­ 0.44, h ­ 6.0d
as observed by two-dimensional time delay of thex coordi-
nate. (b) Scaling of the measuremss´ . dd of points with
prediction error larger thand . 0. The scaling exponent 0.29
is independent ofd and in good agreement with the exponen
M 2 D1 ­ 2 2 1.71 ­ 0.29 given in Conjecture 2. (108 time
series points were used.)
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c.
self-intersections of the attractor as depicted in Fig. 2(a
In Fig. 2(b), the measuremss´ . dd is depicted as a
function of ´ for various error boundsd. mss´ . dd
scales with´ independent ofd, yielding a scaling expo-
nent 0.74 that is in good agreement with the conjecture
value M 2 D1 ­ 2 2 1.26 ­ 0.74 (Conjecture 2). D1

was calculated using both box counting and the Kapla
Yorke conjecture, and these methods yielded the sam
result.

Analogous results have been obtained for the Iked
map [12]

zn11 ­ a 1 bzn exp

µ
ik 2

ih
1 1 jznj2

∂
(8)

sa ­ 1.0, b ­ 0.9, k ­ 0.44, andh ­ 6.0d. With zn ­
xn 1 iyn a complex number, the real and imaginary par
of Eq. (8) yield a two-dimensional real map. The mea
surement spaceX was constructed as two-dimensiona
time delays of thexn component of the statesM ­ 2d
as shown in Fig. 3(a).mss´ . dd is found to scale with
exponent 0.29 independent ofd, in good agreement with
the exponentM 2 D1 ­ 2 2 1.71 ­ 0.29 predicted by
Conjecture 2 [Fig. 3(b)]. As for the Hénon map, both
box counting and the Kaplan-Yorke conjecture yielded th
sameD1 used here.

Thus the scaling law in Conjecture 2 was verified nu
merically in both examples. As the diameter´ of the
neighborhood used for prediction tends to zero, reliab
prediction is found to be possible from most of the point
on a self-intersecting image of the attractor in measureme
spacesM . D1d. The fraction of state space measure from
which prediction fails vanishes aśM2D1 .
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