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Predicting Chaos Most of the Time from Embeddings with Self-Intersections
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Embedding techniques for predicting chaotic time series from experimental data may fail if
the reconstructed attractor self-intersects, and such intersections often occur unless the embedding
dimension exceeds twice the attractor's box counting dimension. Here we consider embeddings
with self-intersection. When the dimensigd of the measurement space exceeds the information
dimensionD; of the attractor, reliable prediction is found to be still possible from most orbit points.

In particular, the fraction of state space measure from which prediction fails typically scales as
eM~D1 for small ¢ where ¢ is the diameter of the current state’s neighborhood used for prediction.
[S0031-9007(98)05339-3]

PACS numbers: 05.45.+b

The observed dynamics of many systems cannot be dé&or prediction purposes self-intersections of the attractor
rived from first principles. In some cases, the underlyinghave therefore been avoided in the past, and techniques
dynamics display low dimensional behavior, and attemptfiave been developed to detect them and to find the required
are made to derive dynamical models from chaotic experiembedding dimensioM to avoid them. In particular, the
mental data [1-3]. Phase space reconstruction techniqué&glse nearest neighbor” concept [2,7] has been success-
have been successfully applied to model low-dimensiondully applied to construct dynamical models in numerous
dynamics from observed data, revealing important dynamifields, and we note that this concept will be particularly
cal properties, such as attractor dimensions and Lyapunaelevant to our discussion in this paper [8].
exponents, and allowing for short-term prediction of the In this Letter we investigate the quality of the prediction
dynamics [4]. when the attractor is not fully unfolded in the measurement

The phase space reconstruction of the system reliespace, but has self-intersections. We find that, provided
on the fact that time series data of generic observablethe dimension of measurement space is larger than the
can be used to construdf-dimensional delay-coordinate information dimensionD; of the underlying dynamics,
vectors (forming the so-called measurement space) that prediction based on the reconstructed self-intersecting
corresponane to on€o phase space states of the systemattractor is possiblenost of the time.More specifically,
This result is backed by embedding theorems due tthe measure of points on the attractor, for which the
Takens [5] and Sauet al. [6]. The theorems in [6] state prediction error exceeds any given error bound, vanishes
that an embedding dimensial larger than twice the according to the power law-&" 21 as the sizes of
box counting dimensioD, is sufficientto fully unfold  the neighborhood [9] used for the prediction tends to
the attractor in the measurement space fogemeric zero. Therefore, for small enoughaccurate prediction
observable(M > 2D,). However, favorable choices of is possible except on a small subset of the attractor even
observables may unfold the attractor in smaller dimensioif the attractor is not completely unfolded in measure-
M < 2Dy, while for other observables the same attractorment space.
may self-intersect id/-dimensional measurement space. This result might justify modeling the dynamics in

While some properties of the system, such as the didimensionsM < 2D; in certain situations where self-
mensions of the attractor, can be obtained from the meantersections occur. For example, this may be advanta-
surement whether the attractor is embedded one to one geous for systems with large attractor dimension, where
whether it intersects itself, the dynamics cannot be unaman embedding id4 > 2D, may not be feasible.
biguously reconstructed at points of self-intersection, and We consider a dynamical system defined on a
dynamical modeling via embedding fails at these pointsk-dimensional phase spadeby the mapy,+; = F(y,)
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for y, in Y. We assume that there exists an attractor othe length of the time series increasescan be chosen
the system, whose natural measureni§y), and whose smaller, and the limiting predicted valug(x,) is then
box counting and information dimension abg and Dy, defined by

respectively. )

In a typical experiment, the phase spatenay not be X (x0) = lim' x:(xo) - 2)
observed directly. By constructing time-delay vectors of
dimensionM from one observable or by measuridgin-  If the measurement functioH is one to one at the point

dependent observables, the phase spaée mapped to  xo, the predictiony,(xo) becomes more and more accurate
an M-dimensionaimeasurement space. We denote the as e goes to zero. In fact, the error in the prediction
mapping from the system’s-dimensional phase spade typically decreases linearly to zeroas~ 0. If, however,
to theM dimensional measurement spatéy H, and we more than one phase space point in the originalpace
call H themeasurement functiofef. Fig. 1). A measure- Yields the same measured valug (i.e., more than one
ment of the system in the stagein Y yields a measured phase space point is mapped to the same paihtthe
vectorx = H(y)in X. The natural measure(y) onthe prediction error ak, does not vanish as — 0.
attractor projected byf into X space is denotegl(x). Suppose, for example, thAt(y) = xo has two possible
Using data from the spack, we attempt to predict solutions fory, H(y@) = H(y®)) = x, (cf. Fig. 1). Af-
the one-step future evolution of the dynamics under ter one time step the point$® andy® evolve toF(y@)
For this purpose one technique [4,10] is to search th@nd F(y®)), respectively (Fig. 1). These two states are
data for previous states in the measurement space time generally observed in measurement sp¥iaes two differ-
series that lie within a distanaeof the present measured ent pointst@ = H(F(y@)) andx®) = H(F(y®))). The
statex = x (i.e., thosex; satisfyingllx; — xoll < &) and  predicted valuey (x) is now the average of @ andx®)
average over their known one-step evolution to obtain afveighted with the appropriate natural measuré$ and
estimatey. (xo) for the one-step evolution of the present m'®) of the two components df ~ ! (B. (xo)) near the points

measured state,. y@ andy® (see Fig. 1). If the natural measure at both
S H(F(y)) points is comparablém(“)_ ~ m(_b)), x(x0) lies far from
Xe(xg) = =22 , (1) x@andx®), and the prediction is inaccurate. If, however,
N(e, xo) the natural measures at both points are very different, e.g.,

Herezs,xo denotes the summation over all pointssuch m@ > m(b), thenX(X()) lies close tOX(a), and the predic-

that |ix; — xoll < &, andN(, xo) is the number of such tion is good with probabilityn@/(m'@ + m®) = 1.
points. For later use we introduce the notatiBp(xo) Assuming that there are enough time series data of the
to stand for the set of such thatllx — xoll < e. Thus ©rPit in X space, so that many points fall B (xo), the

the sum in (1) is over those in the ¢ ball B _As Aaverage over the _time series data points may be replaced
@) Se € (x0) by the average with respect to the natural meagL(e

onX,ie.,
(' Measurement space X I Yelxo) = fH*'(Ba(xo)) H(F(y))dm(y) 3)
x@ = HFG@)) ¢ p(B(x0))
This leads us to the following:
Definition 1—Given a pointxy € X with predic-
tion neighborhoodB,(x¢) on the image of the attractor,
\ consider
n S, HF () = xe(xo)* dm(y)
a ((Axe)") =
M(BS(XO))
(4)
The finite ¢ prediction erroro,(xy) and the prediction
error o (xg) at xo are defined by
KPhase space Y Y / os(xp) = V<(AX8)2>? and o(xg) = Igm) o:(x0), (5)

FIG. 1. As observed with the measurement functidnthe  and a pointx is said to bepredictable,if

two pointsy® andy® are both recorded as the same paint

However, the images of these states under one-step evolution ol(xg) = 0. (6)
are observed as two different point$¥ = H(F(y“)) and _ . _
x® = H(F(y®)). The prediction y(x,) is the weighted Conjecture 1-—The natural measure of predictable points

average of@ andx® and lies on the line joining them. is generically one iy > D;.

1411



VOLUME 80, NUMBER 7 PHYSICAL REVIEW LETTERS 16 EBRUARY 1998

We now give a heuristic argument for Conjecture 1. Conjecture 2—Let § > 0. The measurgu(o, > §)
Given a point on the attractor chosen at random withof points with finite prediction errotr, > & generically
respect to the natural measutethe measurement function scales in the following way: (i) WheD; > M, then
H can be regarded as placing a distant part of the attractqe(o, > 8) ~ O(1). (i) When M/2 < D < M, then
in X essentially at random with respect to the initially u(o, > 8) ~ &M ~P1 | if attractor self-intersections occur
chosen point. The probabilitp, that the chosen point [if attractor self-intersections are absento, > 6) = 0].
falls in ane cube with a large measure of another point on(iii) If D; < M /2, thenu(o, > §) = 0.
the attractor chosen at random with respect to the natural For D; < M/2, typically no boxes containing large
measure is the number of cubes of large meagues ”')  measure overlap. The number of boxes that contain a
divided by the number of cubes covering measuremeriarge measure scales like P1, such that the number of
spaceX (~&M). As e — 0 this probability p, scales intersecting boxes is
like SM_DI. -D M-=2D

The finite & prediction erroro(xo) is either propor- Ny~ e ™ Xpe ~ &7 7, (7)
tional to & for small ¢ if xo represents exactly one state which becomes less than one fir/2 > D; ande small
in phase space, or else is finite and constant ss1ds to  enough.
zero[~0(1)], if xo is a point at which parts of the attrac- We have numerically verified the above conjectures for
tor overlap. In the first casey is predictable; the sec- the Hénon [11] and the Ikeda map [12]. For the Hénon
ond case comprises the points that are not predictable. map we used standard parameters- 1.4 andb = 0.3
the second case, for any (not too large) fixed error boundnd two-dimensional time delaya8/ = 2) of the observ-

8 > 0, the measure of points with finite prediction error able f(x,y) = x + 1.2sin5(x — 2y)]. The observable
o larger thans vanishes likes™ ~?1 if M > Dy, thus jus- was chosen because its time delay displays numerous
tifying Conjecture 1. This leads directly to the following:
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¢ FIG. 3. (a) Ikeda maga = 1.0,b = 0.9,k = 0.44, 7 = 6.0)

as observed by two-dimensional time delay of theoordi-
nate. (b) Scaling of the measuge(o, > &) of points with
prediction error larger thad > 0. The scaling exponent 0.29

FIG. 2. (a) Hénon maga = 1.4,b = 0.3) as observed with
time delay coordinates of the observalfle (b) Scaling of the
measureu(o, > &) of points with prediction error larger than
6 > 0. The scaling exponent 0.74 is independentéofind  is independent o6 and in good agreement with the exponent
in good agreement with the exponevtt — D; = 2 — 1.26 = M — D, =2 — 1.71 = 0.29 given in Conjecture 2. 10® time
0.74 given in Conjecture 2. 10® time series points were used.) series points were used.)
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self-intersections of the attractor as depicted in Fig. 2(a)nications Program), and MURI Grant No. N00014-
In Fig. 2(b), the measurg.(o, > &) is depicted as a 96-1-1123.

function of ¢ for various error bound$. u(o. > 6)
scales withe independent ob, yielding a scaling expo-
nent 0.74 that is in good agreement Wi_th the conjectured John Wiley. New York, 1994).

value M — Dy =2 — 1.26 = 0.74 (Conjecture 2). D, 2] I(-I.D.I. AbgrbaneI,AnaIysis o)f Observed Chaotic Data
was calculated using both box counting and the Kaplan- (Springer, New York, 1996).

Yorke conjecture, and these methods yielded the samgz] H. Kantz and T. SchreibeiNonlinear Time Series Analy-
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£ 0.29 ind dent of i d t with points that are close to each other in measurement space
exponent L. Independen IN good agreement wi due to self-intersections of the attractor. The fraction of
the exponentM — D; =2 — 1.71 = 0.29 predicted by

) . ; such points can then be determined as a function of the
Conjecture 2 [Fig. 3(b)]. As for the Hénon map, both  empedding dimensions. Our present work attempts to
box counting and the Kaplan-Yorke conjecture yielded the  quantify how this fraction is determined by the attractor's

sameD; used here. geometry, in particular, by its information dimension.
Thus the scaling law in Conjecture 2 was verified nu- [9] The minimum required size of the prediction neighbor-
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neighborhood used for prediction tends to zero, reliable N~'/P1. Therefore, a smaller and smaller minimum pre-
prediction is found to be possible from most of the points S'CUO“ neighborhood corresponds to longer and longer
on a self-intersecting image of the attractor in measurement Ime Series. . . .

. 0] The scaling behavior under investigation does not depend
spa_lce(M >.D.1)' The fraCt.IOI’l of state space measure fromT ] on the dest]ails of the method F%r simplicity, we Sse
which prediction fails vanishes ag! . ) ’
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