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From Quantum Dynamics to the Canonical Distribution: General Picture
and a Rigorous Example

Hal Tasaki*

Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171, Japan
(Received 24 July 1997

Derivation of the canonical (or Boltzmann) distribution based only on quantum dynamics is discussed.
Consider a closed system which consists of a mutually interacting subsystem and a heat bath, and
assume that the whole system is initially in a pure state (which can be far from equilibrium) with
small energy fluctuation. Under the “hypothesis of equal weights for eigenstates,” we derive the
canonical distribution in the sense that, at sufficiently large and typical time, the (instantaneous) quantum
mechanical expectation value of an arbitrary operator of the subsystem is almost equal to the desired
canonical expectation value. We present a class of examples in which the above derivation can be
rigorously established without any unproven hypotheses. [S0031-9007(98)05342-3]

PACS numbers: 05.30.—d, 02.50.Cw, 03.65.—w, 05.70.Ln

It is often said that the principles of equilibrium mechanical expectation value at timas
statistical physics have not yet been justified. It is not .
clear, however, what statement should be regarded as (A = (D), (A ® 15)2()), (1)
the ultimate justification. Recalling the astonishingly where (-,-) stands for the inner product, anti(s) =
universal applicability of equilibrium statistical physics, e~ #'®(0) is the state at time. Note that(- - -), is a mixed
it seems likely that there are many independent routestate on the subsystem. Our main result is the derivation
for justification which can be equally convincing and of the canonical distribution in the sense that
important [1,2]. In the present paper, we concentrate  ancan
on one of the specific scenarios for obtaining canonical (A = (M), foranyA, 2)
distributions from quantum dynamics [3]. holds [4] for sufficiently large and typicat, where

Let us outline our problem and the main result. We(A)3" = Trs[Ae Ps]/Trs[e #Hs] is the canonical ex-
consider an isolated quantum mechanical system whicpectation value. We show that (2) holds for rather gen-
consists of a subsystem and a heat bath. The subsystaral systems under the “hypothesis of equal weights for
is described by HamiltoniarHs which have arbitrary eigenstates.” For a special class of models, we prove (2)
nondegenerate eigenvalues,...,e,. For convenience rigorously without any unproven hypotheses.
we lete;+; > ¢; ande; = 0. The heat bath is described ~ We note the following points about the present deriva-
by a HamiltonianHg with the density of state(B). tion of the canonical distribution. (i) We do not intro-
The inverse temperature of the heat bath at enddy  duce any probability distributions by hand. (i) We do
given by the standard formuj@(B) = dInp(B)/dB. We  not make use of the microcanonical distribution. (iii) We
assume (as usuaB(B) is positive and decreasing iB.  do not perform any time averaging. (iv) We do not take
The density of stateg(B) is arbitrary except for a fine any limits such as making the bath infinitely large or the

structure that we will impose on the spectrumiy. coupling infinitesimally small. (v) Quantum mechanics
The coupling between the subsystem and the heat battleems to play essential roles.

is given by a special Hamiltoniafi’ which almost con- In the present paper, we describe our main results and

serves the unperturbed energy and whose magnitude lmsic idea of proofs, leaving details to [5]. We also briefly

[|H'l| ~ A. We assumeAes > A > AB, whereAs is  discuss a possible extension of the present scenario to

the minimum spacing of the energy levels Bk, and more general systems.

AB is the maximum spacing of that éfg. These con- Coupling—We diagonalize the (partial) Hamiltonians

ditions guarantee a weak coupling between the subsysteas HsV; = ¢;V; with j = 1,...,n, andHgI'y = B I'x

and the bath, as well as macroscopic nature of the batlwith £ = 1,..., N, where¥;, I'; are normalized. We

The Hamiltonian of the whole systemit = Hs ® 15 + will impose a fine structure on the spectryy} when

1s ® Hg + H', wherels and1g are the identity opera- we discuss our rigorous results.

tors for the subsystem and the heat bath, respectively. When the couplingH’ is absent, the total Hamil-
Suppose that the whole system is initially in a pure statéonian Hy = Hs ® 1z + 13 ® Hg has eigenstates

®(0) which has an energy distribution peaked around (buB® ;) = ¥; ® I'y with eigenvaluesU;x = &; + Bx.

not strictly concentrated afj. Itis possible to treat mixed We now introduce a new indek=1,...,nN for ® and

states as well, but such extensions are not essential. Fof. The index{ is in a one-to-one correspondence with

an operatord of the subsystem, we denote its quantumthe original index( j, k) such thatU,+; = U, holds for
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¢ =1,...,nN — 1. We define the coupling Hamiltonian = The eigenstates of (4) with a constdht = U arep; =

H' as et with k = cos '[(E — U)/A]if |[E — U| < A, and
_ xxk _ €kl i _ 1

A2, W= =1, o =e [or o¢ = (—1)*e™ <] with k = cosh '[|E —

(O, H'O¢) = {0’/ otr|1erwise! 3 Ul/A]if E-U>A (or E— U< —)). Since our

. S , ) potentialU, varies slowly in¢, the quasiclassical argument
with a constantA > 0. T'he HamiltonianH’ describes 6] suggests that generally, takes appreciable values
scattering processes which almost conserve the unpejy ihe “ciassically accessible region” (which consists of
turbgd energy. o . € such thalE — U¢| = A), and is negligible outside the

_Eigenstates: main idea-Let ®; be a normalized (o4ion  More precisely we expect that, for genefal
eigenstate of the total HamiltonialH = Iz{vo + H’ with we can write|e¢|? =~ f(E — U,) with a (E dependent)
energy E. Expanding it as®z = >, (O, the  fynction f(E) which is non-negligible only fol| < A.
Schrédinger equatioR® = Hdp is written as In terms of the original index, this reads

Ep, = i( + )+ U 4)
e AR A tees |€0(j,k)|2 ~ f[E — (g + Bp)]. 5)

with @9 = ¢,ny+1 = 0. This may be regarded as the

Schrodinger equation for a single quantum mechanical 10 S€€ consequences of (5), we take an arbitrary
“particle” on a “chain”{1,2, ..., nN} under the monotone OPerator A of the subsystem, and denote its matrix
“potential” U. elements agd); j = (¥;,A¥;). By using (5) and noting

| thatAe > A > AB, we find

S Siuleinl ),
i k 1P k) .
(Pp, (A @ 15)Pp) = O(i0 Pl A = =5
j,jfzzl k; R Y Yiklegnl?

_ Y [dBp(B)f(E — &; — B)(A);,; _ 2 p(E — gj)(A),
> [dBp(B)f(E — & — B) >ipE — &)

where the final estimate follows by Taylor expandirth = Bnax — 2A, and &g be the corresponding eigen-

p(E — g;) as usual. states. Then for any operatarof the subsystem, we have
The relation (6) states that the expectation value in an (P, (A ® 15)Dr) — (A)F") = ollAll. (7)

eigenstate is equal to the desired canonical expectatigiare — 3BA + y(8,)? + cL™V12 with B =

value. This is the key estimate in the present Letter, an%(E) = dInp(E)/dE, y = |dB(E — N)/dE|, Al =
the rest of our results follow from relatively general (and max; i |(A); #|, andc is a constant independent &f E,
standard) arguments. Although we have restricted Ouénd}i]. M

discussion to thé?’ of the form (3), we expect (and can Note that we haver < 1 if (i) the coupling is weak
partially prove [5]) that the property (5) holds for general (to have BA < 1), (i) B(E) varies slowly [to have
eigenstates of systems with more general coupliHgs y(e,)? < 1], and (iii) the level spacing of the bath is
This may be called [5] the “hypothesis of equal weightssma" (to have L2 « 1). Recall that these are

for eigenstates,” from which we may get the key estimatghe standard assumptions regarded necessary to get the

©6) qnd Its consequences. _ _ canonical distribution. We have established the key
Eigenstates: rigorous resuit-We will precisely state ogtimate (6) rigorously under reasonable conditions.

the assumption oil/g, and describe a rigorous estimate Long-time average—Let ®(0) be the initial state (of

corresponding to (6). We fix an energy uéit> 0 (which e whole system), and expand it as
may be much smaller than), a positive integerR, and '

positive integersVf;, M, ..., Mz. We then introduce an D0) = D yrPr, (8)
integer L = Ly (whereL, is a constant), which will be E
made sufficiently large (but finite) to realize the situationWhere the sum runs over the eigenvalue&/ofThe state at

where the bath is “large.” We require for each—  timerisgivenby®(s) = > pe " yp®g. Thenthe quan-
1,...,R that LM, eigenvalues offy are distributed in tum mechanical expectation value (1) can be written as

= (AVs(E) - (6)

the interval((r — 1)8,r8) with an equal spacing, = A), — i(E—E')t A Dr (A ® 1e)P o 9
(LM,)"'6. Thus the density of states of the bath is A ,;,e (e) 7e (P ( B)Pe). (9)
written asp(r6) = LM, /. Since energy eigenvalues of (4) are nondegenerate, we find

lution of (4) and the sums in (6) to get the following [7].

Lemma—Consider a system whetédy has the above @Ay =D lyelXPp, (A ® 15)Dp)
fine structure, and the coupling’ is given by (3). We £
assumee;+; — ¢; = 4A for any j. Let E be an eigen- - J2(A)eEn 10
value of the whole Hamiltonia#/ such thats, + 21 = ; e A s (10)
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whereF (1) = limr_.. T~ [§ dt F(r), and we used (6) or with a; non-negligible fork in a finite range. Note that
(7) to get the final line. the state (12), restricted onto the subsystem, is very far

Further suppose that the initial statg0) has a small from equilibrium sincen is the index for the highest
energy fluctuation in the sense that the coefficienisis  energy state of the subsystem.

non-negligible only forE’ close to some fixed energy. Approach to equilibrium—We have seen that, for
Then (10) reduces to the initial state with small energy fluctuation, the time-
(A), = <A>,C’33(r;5)’ (11)  independent part in the right-hand side of (9) gives the

which states that the long-time average of the quanturffésired canonical expectation value. The time-dependent
mechanical expectation value is almost equal to th@art of (9) is a linear combination of many terms

desired canonical expectation value [8]. oscillating int with different frequencies. It might happen
An interesting example of an initial state with small that at sufficiently large and typical (fixed) these
energy fluctuation is oscillating terms cancel out with each other, afd,
becomes almost identical to its time-independent (gt
D) =V, ® > a7y, (12) This naive guess is strengthened by the following
K

| simple estimate of the variance.

(A) = (A% = (A))? — (A))°

2
= Z (ve)" vE,(YE,) VE, €/ B B EsmEVIE |A|Ey ) (ES| Al Ey) — (Z |7E|2<E|A|E>)
EyEy Es B E

= D lyelPlyelXEIAIE") (E'|AIE) = n*|lAII* mngIvElz, (13)
E.E’

where we used the Dirac notatidB|A|E'Y = (Dg, (A ® | 1 (G) the total length of the intervals i§, we have
15)®p), and used the bountE|A%|E) < n?||All>. We 1/3

also assumed the nonresonance condition for the rele- 1= ~G) =1 — 3cl(i> ) (15)
vant energy eigenvalues, i.e., whenekigr— E, = E; — r €

E; # 0 holds forE; such thatyg, # 0, we haveE; = E4 ) . . u .

and E, = E;. Although we are not able to verify the =" Simpler words,G is the collection of “good” time
nonresonance condition for a particular given model, it igNt€rvals, in which the quantum mechanical expectation
easily proved that the condition is satisfied for generic\{alue ofany operator Is equal to th/e canonical expecta-
models [9]. When a large number of states equally contion v_alue Wlthln the rela'glve erroo’. The new factor
tribute to the expansion (8]yx|?> and hence the right- Ae, is s_maII if '[h.e. coupl|ng__|s weak. Therefore under
hand side of (13) is very small. This means tia}, the ph)//SICSd colndltlonls/s(l)_—(m) stated below the Lemma,
usually takes values very close to its averégg. both o' and 3¢'(A/e,)"/" in (15) are small. Then (15)

Following the idea of the Chebyshev's inequality [10], says that the good intervals essentially cover the whole

this observation can be made into a rigorous statemenllr.‘terval [0, 7). We thus have obtained the desired (2) for

Instead of writing down the general theorem [5] we mOStth'thtm th_e ]:“m]? mterval_?i r= th OR%C""” that
present its consequence for the special (but interestingi?e subsystem IS far irom equilibrium ac= 9. By using
situations with the initial states (12). nly quantum dynamics and the assumptions about the

Theorem—Suppose that the conditions of the Lemmainitial state, we have established an approach to the de-

hold. and the nontesonance condition is valid for en_sired canonical distribution from a highly nonequilibrium

ergy eigenvalues with, + 24 = E; = Bpax — 2A. Fix state. AI'Fhough'our theorem is proved only for systems
an arbitrary energye with &, + 3A = E = Bpax — 3A. with _part_|cular f|r_1e str_ucture“and speci_fal, the essentl_al
Take an initial stated(0) of the form (12), and as- phyS|_cs IS contfuned in the “hypothesis of eqL."."I weights
sume that, is nonvanishing only fok such thatlE — for eigenstates ap_d the nonresonance condition (or_ re-
(By + )| = £,/2, and satisfiesa;)? = /[s,p(E)]"" lated weaker conditions). We expect the same scenario to
with an arbitrary constant’ = 1 [11]. We let ¢/ = work for much_ more general systems. .

3BA + 3y(en)? + cL™ V12 + n2(A/e,)'/3, where B, y Our result is not strong en_ough to c_Iarlfy hoie ),

are the same as in the Lemma. Then there exists a ﬁ’;gpproaches (or deviates from) its equilibrium value: . N_ote
nite 7 > 0 and a subset (i.e., a collection of intervals) that we can never expect a perfect decay to equilibrium

; : : since (A), is quasiperiodic inz. In a long run,{A),
IGECg[O,V\g r\]l;\:\t,g the following properties. - (a) For any deviates from the equilibrium value infinitely often. Our

ean , theorem does guarantee that such deviations are indeed
KA): — (A"l = o'llAll, (14)  very rare for a weak (but finite) coupling. Unfortunately
for any operator of the subsystem. (b) If we denote by we do not have any meaningful estimate Tar
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Irreversibility.— One might question if our theorem im-
plies the existence of an “irreversible” time evolution to-
wards equilibrium. We believe the answer is affirmative,

but we have to be careful about this delicate issue. We

first stress that, exactly as in classical cases [1], whether

we see irreversibility or not depends on the choice of [4]

physical quantities that we observe. We should clearly
see irreversibility when (there is irreversibility and) we
observe quantities which have small fluctuation in the
equilibrium (and preferably in the initial state too) [12].

To get an illustrative example, we supposés large,
and setA to be the projection onto the staté,. A

has eigenvalues 0 and 1.

In the initial statd0) of

the form (12), an observation of does not disturb the
state and one gets a definite result 1. We then wait for a
sufficiently long time (required by the theorem), and once

again observed at time .
the exceptional “bad” intervals, the theorem guarantees

If this # does not belong to

that (A), = (A)z" = O(1/n). This doesnot mean we
observe a value ot (1/n), but means we observe the
definite value 0 with probabilityl — O(1/n) which is
essentially 1 for large enough This is what we mean
by (macroscopic) irreversibility [1,13].
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(1993); Phys. Todayt6, No. 9, 32 (1993); in25 Years
of Non-Equilibrium Statistical Physicedited by J. J. Brey
et al., Lecture Notes in Physics Vol. 445 (Springer, Berlin,
1995); Y. Oono, inEncyclopedia of Polymer Science and
Engineering (John Wiley, New York, 1989), 2nd ed.,
Vol. 15, pp. 614-625; J. Bricmont, Phys. Maly, 159—
208 (1995) [reprinted inThe Flight from Science and

(5]

(6]
[7]

(8]

9]

(10]

Reason(New York Academy of Sciences, New York, [11]

1996); archived as chao-dyn/9603009].

[2] We also feel too much emphasis on the possible roles of

(3]

chaos (either classical or quantum) in the foundation of
statistical physics can be misleading. But for attempts to

derive statistical distributions using results and conjecture$12]

from “gquantum chaos,” see M. Srednick, Phys. Re\a(E
888 (1994); J. Phys. &9, L75 (1996).

For numerical experiments which confirm similar scenar-
ios, see R.V. Jensen and R. Shanker, Phys. Rev. Lett.
54, 1879 (1985); K. Saito, S. Takesue, and S. Miyashita,

1376

(13]

J. Phys. Soc. Jp5, 1243 (1996); Phys. Rev. &4, 2404
(1996). There is a vast literature for situations where an
(infinitely large) heat bath is put into an equilibrium dis-
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Note that (2) is true forany operators. Therefore when
one “observes’A, one does not see the expectation value
itself, but finds fluctuation according to the prediction of
the canonical distribution. The origin of the fluctuation
may be traced back to the probabilistic interpretation in
the Copenhagen spirit. It is correct to say that (at least in
the present way of introducing the canonical distribution
and within the standard interpretation of quantum mechan-
ics) there is no intrinsic distinction between quantum fluc-
tuation and thermal fluctuation. (Our results themselves
are free from any specific interpretations of quantum me-
chanics.) We stress, however, that the present one is not
at all the only reasonable way of introducing probability.
See, for example, Ref. [1].
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L.D. Landau and E.M. LifschitzQuantum Mechanics:
Non-relativistic TheoryPergamon, New York, 1977).

Even with the fine structure orf{z, we are not able

to control the global solution of (4), and the actual
proof is rather involved. In the classically accessible
region, we divide the whole range of into small
intervals, and prove in each interval that has the form
suggested by the (discrete version of) quasiclassical analy-
sis [6]; @¢ = Acos{Zﬁ,:% ke + 6)//sink, with k,
cos '[(E — U;)/A]. The estimate of the sums in (6) is
nontrivial becausep, oscillates. Near the turning points,
we approximate (4) by a continuous equation and estimate
¢¢ using Bessel's functions. Details can be found in [5].
The assumption of small energy fluctuationpbysically
necessaryno matter how one “derives” the canonical
distribution. Without the condition, we end up with a
Schrédinger's cat type state where states with different
temperatures are superposed.

Let us restrict ourselves to the nonresonance condition
for eigenvalues withE = g, + 2A (which is all we
need). Suppose that we have a model which violates the
nonresonance condition. Then by slightly shiftiBg in

the lowest two band$0, §) and (8,268), we get a model
which satisfies the condition [5].

W. Feller, An Introduction to Probability Theory and Its
Applications I(Wiley, New York, 1968).

We took the allowed energy width equal tg only to
make formulas simpler. We can prove the corresponding
estimates for any energy width. Fef = 1 the upper
bound for(ay)?> means that all the allowed basis states in
(12) contribute almost equally.

Macroscopic observables in macroscopic systems auto-
matically have such properties.

We arenot trying to get irreversibility from disturbances
by observations. We believe it highly misleading to
expect any positive roles of observations in (macroscopic)
irreversibility and stochastic behavior.



