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Combinatorial Entropy and the Statistical Mechanics of Polydispersity
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A new method to treat statistical mechanics in a polydisperse system is described, applicable
when the nonideal part of the free energy depends only on a few moments of a size distribution.
A simple entropic contribution to the free energy is identified from combinatorial considerations.
Although approximate in the general case, the method obtains the exact spinodal curve, critical
points, cloud curve, and shadow curve. Polydisperse Flory-Huggins theory is treated as an example.
[S0031-9007(97)05161-2]

PACS numbers: 05.20.—y, 61.25.Hq, 64.10.+h, 82.70.-y

Crude oil, polymers, commercial surfactants, and colas thermodynamic density variables [this inclugesas
loidal suspensions are typical examples of industrially im-a special case, whef),(¢) = 1]. For instance, if phase
portant polydisperse systems. The thermodynamics angkparation occurs, tie lines ipm,) space are straight,
phase behavior of such systems underly, at least in pardnd the lever rule applies.
important processing characteristics, storage stability, and Even if the excess free energy depends only on the
other properties. Thermodynamically, a polydisperse sysmoment variables, the ideal part still depends explicitly
tem can be regarded as a system with a continuously iren the distributionp (o) through the entropy of the mix-
finite species type [1-4]. In some cases (colloids), iting term. This prevents an immediate transformation to
genuinely is the case that every particle is (subtly) differ-moment variables. As is well known, entropy of mixing
ent from every other. In other cases (crude oil, polymers)comes from the factot/N! in the partition function, or
the number of species is large but finit®{-10°, say). 1/11; N;! for a multicomponent system. This in turn is

Subtleties, too, arise in the representation of the phasasually derived from the classical limit of quantum sta-
behavior of polydisperse systems. Instead of a binodaistics [7], but a rigorous derivation in classical statistical
region with tie lines, for instance, one should think of mechanics is both possible, and necessary to identify the
a cloud curvegiving the compositions at which phase corresponding term in the moment description.

separation just starts to occur, angledow curvegiving To do this, follow Gibbs [8] and define a (nonextensive)
the composition of the newly emerging phase [1]. free energyF’ via

Frequently, the excess free energy of a polydisperse
system depends only on a few moments of a size dis- e PP = ] dTe PHD), (1)

tribution. Examples include polydisperse Flory-Huggins
theory [2], the polydisperse hard sphere fluid [3], andwhere 8 = 1/kgT is inverse temperaturekf is the
polydisperse hard rods in 1D [4]. In this Letter, | discuss aBoltzmann's constant)H is the Hamiltonian, and the
novel and general analysis which reduces the overall thefategral is over all phase space configuratibnsNo 1/N'!
modynamic description to an equivalent finite componengppears in this, as all particles are distinguishable. This
problem involving moment variables. The use of mo-factor reappears though when computing the free energy
ment variables has been considered previously by Irvin@f two or more systems considered together. Suppose that
and Gordon [5], and Beerbauet al. [6], but only to de-  two systems containiny; andN, particles are considered
rive truncation theorems for the spinodal and critical pointas a joint system. Following the prescription in Eq. (1),
conditions. Their results can be derived from the preserfhe free energy of the joint system is found from
theory as a special case. ’ .

Toyfocus Ft)he discussion, consider a system 2of e PP = 3 o PR (2)
particles in a volumé&/, at a densityp = N/V. Suppose prins
that each particle has a propewy (particle diameter or where the phase space integral has been done in two parts.
chain length, for instance), drawn from some distributionFirstly, for each way of partitioning the particles between
p(o). If the system is monodisperse all of the particlesthe two systems, the individual phase space integrals give
have the samer;, in which casei is just a passive the product of the individual partition functions. Sec-
label. In general, there may be any number of differenbndly, andcrucially, one must sum over th&'!/N;!N,!
species, or all particles may be genuinely different. Thewvays of partitioning the particles. Note that the individual
moment variables referred to above are quantities suctlistinguishability of particles is essential in this step. In
asm, = Y., fa(c;)/N, where thef,(o) are various quantum theory for indistinguishable particles, the count-
functions of 0. The idea is to use the quantitigen,  ing procedure would be different because each state of the
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system would be a superposition of states corresponding In this caseP (m;) becomes easier to calculate, asdhe
to the classical partitions. in the small system may be treated as independent random
Now definea conventional (extensive) free energy by variables. By writing the moment generating function of
_pr _ 1 —BH() P(my) as a product over moment generating functions of
¢ TN [ dl'e ’ (3) p(o), and evaluating the resulting integral by the saddle
i.e., re-insert thd /N'! as though all particles are the same.Point method in the thermodynamic limit, one can show
Equation (2) can then be written as that the combinatorial entropy per particle is given by a
o BF — <e*B<F1+F2>> ‘ ) Legendre transform: IR(ml_)/Nl =.h(¢9) + m; 0, where
. prins> . m; = —dh/d6. The functionk(0) is the cumulant gen-
whe_re_the average is takg_n over partitions wmgal erating function, defined by*® = [ do p(o)e=7° [10].
a priori probabilities. Traditional thermodynamics is re-  1apje | gives the results for two standard distributions.
coverable from Eq. (4) if all particles are identical as fary; 5 interesting to see that the combinatorial entropy for

as their interactions are concerned, as thend F> de- 5 Gayssian distribution can be interpreted as an entropic
pend only onV; andN; which are fixed, and the average is gy ing \which tiesn to the mean size of the parent distri-

trivial: F = Fy + F». Multicomponent thermodynamics p,ion [11]. The strength is inversely proportional to the
for a finite number of species can be similarly derived. A\ 5riance of the parent distribution. For the Schulz distri-
key advantage of Eq. (4) appears though for polydispersg, sion note that the logarithmic divergencenas— 0 pre-
systems, since it leads to the generalisation of the entropyanis the mean size from becoming unphysically negative.
of mixing for moment variables. The limiting case described above gives exact results for
In the example below, the excess free energy depenqg,, important classes of problems. The first is the ther-
only on the mean size, which | shall denote [i.e.,  5qynamic stability of a homogeneous system (spinodal
fa(o) = 0. The moment reduction will be to two den- o,es critical points, etc.). This is exact because stabil-
sity variablesp andpm = ¢. To save on cumbersome ., can he probed by allowing fluctuations to take place in
notation, | will present results for this case only. All re- 4 vanishingly small subregion. The second concerns the
sults can be generalized to the case of several momegf,,q and shadow curves. These are exact because, by
varlables,/o_r polydls_persny in more than one quantity. definition, only an infinitesimal amount of a second phase
Now, F” is essentially the excess free energy which i 55 appeared. These arguments are qualitative, but formal
taken to depend om only, anq the same applies #© roofs of the exactness of the present method in deriving
by construction. _T_he average in I_Eq. (4) may therefore bg,.qq properties will be presented elsewhere [9].
taken by constraining the mean size: Spinodal curves, critical points, cloud curves and
e BF = f dmyP(my)e PEITF), (5) shadow curves are of great interest in mapping out the
phase behavior of new models, or old models extended to
whereP(m,) = (8(m; — Zi‘v='1 i/N1))prns is the proba- include polydispersity. The new method may therefore
bility distribution for the mean size in the first system Prove widely applicable and highly useful. It can be
(m1) taken over partitions with equalpriori probabilites ~ used approximately for full phase behavior calculations,
(given m;, the mean size in the second system is fixed00, by considering two (or more) small systems, each
by the moment equivalent of mass balance). Clearly, théeparately in equilibrium with a large (reservoir) system.
combinatorial functiorP(m, ) is the key to the problem. It ~ As an example of the method in action, | now consider
appears in the joint free energy asambinatorial entropy, Polydisperse Flory-Huggins theory with a Schulz distribu-
kg In P(m,), replacing the entropy of the mixing term. tion as the parent distribution. Results derived previously
An exact result fot? (m;) will be described in a longer using the traditional approach are recovered with ease. For
publication elsewhere [9]. It involves rather intractablethis case, the free energy density (in unitscgf’) is
integrals, and from a practical point of view itisnotmuch  f = plnp + (1 — ¢)In(l — @) + xd(1 — @)
use. In this Letter, | will confine myself to a much simpler
but still very useful result which one obtains when the —apin(é/p), (6)
first subsystem is taken to be very much smaller than theherep is the chain number density (nondimensionalized
second. by the segment volume®), ¢ is the chain volume fraction,

TABLE I. Parent distributionp(o), cumulant generating functioa(d), and combinatorial
entropy per particle I?(m)/N for Gaussian and Schulz parent distributions. Constants and
terms linear in the mean size have been dropped from the combinatorial entropy.

p(o) h(6) InP(m)/N
exd— (o — 7)?/2v]/270 7O + v6%/2 —(m — @)?/2v
o e /B /BT () —aln(l + B6) alnm
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and y is Flory's y parameter [2]. The first three termsin  The heavy line in Fig. 1 is the physicab = Lyp
Eqg. (6) are standard. The last term is the combinatoriatonstraint. As discussed previously, only systems whose
entropy for the Schulz distribution (Table ). The advan-mean composition lies on this line are allowed. This
tage of the new approach is rapidly apparent, as the polyneans that not all of the phase behavior shown in Fig. 1
disperse problem has been reduced to two compongnts,is accessible. The extremities of phase separation on
and¢. the ¢ = Lyp line are points where phase separation
The spinodal curve (SC) and critical point (CP) condi-just starts to occur, and the locus of these points in the
tions may be calculated from Eq. (6) via the usual deterphysically accessiblé¢$ = Lyp, x) plane is the cloud

minant conditions [8]: curve, shown in Fig. 2. The compositions of the phases
1 a p that just start to appear as the cloud curve is passed do

T~ X T pri 0 (SO, () not, in general, lie in the physical plane (they are the
compositions at the other ends of the cloud point tie lines

1 _ala+2) p -0 (CP (8) in Fig. 1). These compositions may be projected onto the

1-=¢)2 (a+1)2 ¢3 ’ physical plane to give a shadow curve, by ignoring the

These results should be supplemented by the constraiM@lue of p, for instance. The shadow curve obtained in
that = Lyp, WwhereLy = a8 is the mean or number this way for the present problem is also shown in Fig. 2.

average chain length for the parent distribution. This Figure 2 also includes the spinodal stability curve and
constraint must be imposed as the whole calculation ighe critical point from Egs. (9) and (10). The spinodal
based on a combinatorial entropy which is derived fromcurve and the cloud curve touch at the critical point,
a given parent distribution. Applying the constraint andwhich no longer lies at the minimum of either. This

writing Ly = (@ + 1)8 and L; = (a + 2)B for the distorted behavior is a well-known feature of polydisperse
weight andZ-average chain lengths, respectively, give systems. Here it is seen to be due to the way tbgtlar

1 1 phase behavior iff¢, p, x¥) space is cut through by the
R -2y — ﬁ =0 (SO, (9)  physical constraint. The shadow curve also passes through
W the critical point. All the curves shown in Fig. 2 are
1 Lz 1 0 (CP (10) exact, even though they have been constructed from phase

behavior in Fig. 1, which is only an approximate projection
of the true phase behavior of the fully polydisperse system.
Also shown in Fig. 2 is the phase behavior of the
monodisperse polymer with chain length equalLig, the
gnean chain length in the polydisperse system. Comparing
it with the cloud curve of the polydisperse system, the

diagram gives an appealing geometric insight into theG)(thent 0‘; phaﬁe Iseparart:_on_ IS se(;n to kl)lekcon3|defFany
problem, for instance, the slope of the tie lines indicate§nnanced in the latter—this Is another well-known effect

a size partitioning effect, the more dense phase bein§f Polydispersity. I derat
enriched in long chains. Returning to more general considerations, one can

consider the effect of polydispersity on tlgnamicsof

(1 —¢2 L ¢?
As promised, these are the exact results [2].

I have also calculated binodal curves in tife p) plane
numerically from the free energy Eq. (6) [12]. Figure 1
shows binodal curves, tie lines, spinodal curves, an
critical points superimposed for three valuesaf The
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FIG. 1. Phase behavior of polydisperse Flory-Huggins theory $="Lwp

in the (¢,p) plane for a Schulz distribution withLy = FIG. 2. A cut through the phase behavior in Fig. 1 by the
100, Ly /Ly = 1.5, for the free energy in Eg. (6). Shown physical(¢ = Lyp, x) plane showing the cloud curve (solid
superimposed, in order of increasing size, are two-phase regiotiee), shadow curve (long-dashed line), spinodal curve (dashed
for y = 0.55, 0.585, and 0.62. Binodals and tie lines are solidline), and the critical point. Also shown for comparison is the
lines, spinodal curves are dashed lines. The physical Ly p two phase region for the monodisperse Flory-Huggins theory
constraint is a thick solid line. with the same mean chain length,= 100.
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phase separation. Here, very little work appears to have. Bladon, N. Clark, T. McLeish, and W. Poon, for
been done. It is certainly not clear whether momenilluminating discussions.
variables will prove to be as useful for analyzing the
dynamics as they are in constructing the equilibrium phase
behavior. A plausible scenario suggests itself though,
on realizing that the overall density can be relaxed by [1] J.A. Gualtieri, J. M. Kincaid, and G. Morrison, J. Chem.
collective particle motion much more easily than the Phys. 77, 521 (1982); J.G. Briano and E.D. Glant,
moments. In a standard nomenclature, one might expect J. Chem. Phys80, 3336 (1984).
p to be a fast variable and the, to be slow variables. [2] See, e.g., P.J. FloryPrinciples of Polymer Chemistry
Phase separation might proceed in two stages: A fast[s] I(_C%rlzil g:é"gs'gélllthj‘céhtgrg’%h 51 42 (1979); 2.9
denS|ty_ relaxation to a phase equilibrium (_jlctated by Salacuse and G. Stéll, 3. Chem. )Iéhyli', 3714 (1582);
qger)chl_ng the moments to the mean_values in the parent P. Bartlett, J. Chem. Phy&07, 188 (1997).
dlgtr|but|on, fpllowed by a slow annea!lng of the moments 4] 3.3. Salacuse, J. Chem. Phga, 2468 (1984).
(with p tracking them as a slaved variable), as the systemjs) p_jrvine and M. Gordon, Proc. R. Soc. London 35
moves towards the true free energy minimum. This area = 397 (1981).
certainly warrants further investigation. [6] S. Beerbaum, J. Bergmann, H. Kehlen, and M. T. Ratzsch,

Finally, the present analysis throws an interesting Proc. R. Soc. London 406, 63 (1986);414, 103 (1987).
sidelight on the Gibbs paradox, which suggests there[7] See, e.g., L.D. Landau and E.M. Lifshit&tatistical
should be an entropy of mixing on bringing into contact  Physics(Pergamon, Oxford, 1989), 3rd ed., Part 1.
two systems of classically identical but distinguishable [8] J. W. Gibbs, The Collected Works of J. Willard Gibbs;
(or labeled) particles. Actually, such “experiments” are 1€ Scientific Papers of J. Willard Gibleprint) (Dover,
realized every day in computer simulations since the New York, 1960). :

; ) L [9] M.E. Cates, P. Sollich, and P.B. Warren (to be

array index provides a label. An examination of Eqgs. (3)

. . o published).
and (4) indicates that, by the appropriate definitionsy;q This approach is also central to the theory of large

the entropy of mixing in such a case can be made t0 ~ geyiations [H. Cramér, Act. Sci. Indust36 5 (1938)];
vanish. These definitions are rlgOfOUSly based, and are the see, e.g., R.S. EllisEntropy, Large Deviations and

natural ones to ensure extensivity. Essentially, the same  Statistical Mechanic§Springer, New York, 1985).
resolution is describe aynes , who pointed ouf11] Polymers also behave as entropic springs; in this case
lut described by Jaynes [13], who pointed ouf11] Pol Iso beh h
that Gibbs himself had explained it, but in an untypically there is a close connection to the theory of the end-end
opaque manner [8]. It really turns on whether the particle  distribution of a finitely extensible polymer chain. See,
labels can be coupled to an external variable or not. If ~ €49. P.J. FloryStatistical Mechanics of Chain Molecules
they can't, one can define away the entropy associated  (Interscience, New York, 1969). ,
with them. 12] Actually, the free energy simplifies still further by a partial

. Legendre transformation top, u,). This is peculiar to
After this work was nearly complete, | learned from the Schulz distribution.

P. Sollich and M. Cates [14] of an approach WhiCh'[13] E.T. Jaynes, iMaximum Entropy and Bayesian Methods,

although based on distinctly different physical principles, edited by C.R. Smith, G. J. Erickson, and P. O. Neudorfer,
is broadly equivalent to the one presented here. Proofs (Kiuwer Academic, Holland, 1992).

of this equivalence and further details of both methodg14] P. Sollich and M. E. Cates, preceding Letter, Phys. Rev.
will be presented elsewhere [9]. | thank them, and also  Lett. 80, 1365 (1998).
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