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Combinatorial Entropy and the Statistical Mechanics of Polydispersity
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A new method to treat statistical mechanics in a polydisperse system is described, applicable
when the nonideal part of the free energy depends only on a few moments of a size distribution.
A simple entropic contribution to the free energy is identified from combinatorial considerations.
Although approximate in the general case, the method obtains the exact spinodal curve, critical
points, cloud curve, and shadow curve. Polydisperse Flory-Huggins theory is treated as an example
[S0031-9007(97)05161-2]
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Crude oil, polymers, commercial surfactants, and co
loidal suspensions are typical examples of industrially im
portant polydisperse systems. The thermodynamics a
phase behavior of such systems underly, at least in p
important processing characteristics, storage stability, a
other properties. Thermodynamically, a polydisperse s
tem can be regarded as a system with a continuously
finite species type [1–4]. In some cases (colloids),
genuinely is the case that every particle is (subtly) diffe
ent from every other. In other cases (crude oil, polymer
the number of species is large but finite (102 105, say).

Subtleties, too, arise in the representation of the ph
behavior of polydisperse systems. Instead of a bino
region with tie lines, for instance, one should think o
a cloud curvegiving the compositions at which phas
separation just starts to occur, and ashadow curvegiving
the composition of the newly emerging phase [1].

Frequently, the excess free energy of a polydispe
system depends only on a few moments of a size d
tribution. Examples include polydisperse Flory-Huggin
theory [2], the polydisperse hard sphere fluid [3], an
polydisperse hard rods in 1D [4]. In this Letter, I discuss
novel and general analysis which reduces the overall th
modynamic description to an equivalent finite compone
problem involving moment variables. The use of mo
ment variables has been considered previously by Irv
and Gordon [5], and Beerbaumet al. [6], but only to de-
rive truncation theorems for the spinodal and critical poi
conditions. Their results can be derived from the prese
theory as a special case.

To focus the discussion, consider a system ofN
particles in a volumeV , at a densityr ­ NyV . Suppose
that each particle has a propertysi (particle diameter or
chain length, for instance), drawn from some distributio
pssd. If the system is monodisperse all of the particle
have the samesi , in which casei is just a passive
label. In general, there may be any number of differe
species, or all particles may be genuinely different. T
moment variables referred to above are quantities su
as mn ­

PN
i­1 fnssidyN, where thefnssd are various

functions of s. The idea is to use the quantitiesrmn
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as thermodynamic density variables [this includesr as
a special case, whenfnssd ­ 1]. For instance, if phase
separation occurs, tie lines insrmnd space are straight,
and the lever rule applies.

Even if the excess free energy depends only on
moment variables, the ideal part still depends explicit
on the distributionpssd through the entropy of the mix-
ing term. This prevents an immediate transformation
moment variables. As is well known, entropy of mixin
comes from the factor1yN! in the partition function, or
1y

Q
i Ni! for a multicomponent system. This in turn i

usually derived from the classical limit of quantum sta
tistics [7], but a rigorous derivation in classical statistic
mechanics is both possible, and necessary to identify
corresponding term in the moment description.

To do this, follow Gibbs [8] and define a (nonextensive
free energyF0 via

e2bF 0

­
Z

dGe2bHsGd, (1)

where b ­ 1ykBT is inverse temperature (kB is the
Boltzmann’s constant),H is the Hamiltonian, and the
integral is over all phase space configurationsG. No 1yN!
appears in this, as all particles are distinguishable. T
factor reappears though when computing the free ene
of two or more systems considered together. Suppose
two systems containingN1 andN2 particles are considered
as a joint system. Following the prescription in Eq. (1
the free energy of the joint system is found from

e2bF 0

­
X

prtns
e2bsF 0

11F 0
2d, (2)

where the phase space integral has been done in two p
Firstly, for each way of partitioning the particles betwee
the two systems, the individual phase space integrals g
the product of the individual partition functions. Sec
ondly, andcrucially, one must sum over theN!yN1! N2!
ways of partitioning the particles. Note that the individu
distinguishability of particles is essential in this step.
quantum theory for indistinguishable particles, the coun
ing procedure would be different because each state of
© 1998 The American Physical Society 1369
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system would be a superposition of states correspond
to the classical partitions.

Now definea conventional (extensive) free energy by

e2bF ­
1

N!

Z
dGe2bHsGd, (3)

i.e., re-insert the1yN! as though all particles are the same
Equation (2) can then be written as

e2bF ­ ke2bsF11F2dlprtns , (4)
where the average is taken over partitions withequal
a priori probabilities. Traditional thermodynamics is re
coverable from Eq. (4) if all particles are identical as fa
as their interactions are concerned, as thenF1 andF2 de-
pend only onN1 andN2 which are fixed, and the average is
trivial: F ­ F1 1 F2. Multicomponent thermodynamics
for a finite number of species can be similarly derived.
key advantage of Eq. (4) appears though for polydisper
systems, since it leads to the generalisation of the entro
of mixing for moment variables.

In the example below, the excess free energy depen
only on the mean size, which I shall denotem [i.e.,
fnssd ­ s]. The moment reduction will be to two den-
sity variables:r andrm ; f. To save on cumbersome
notation, I will present results for this case only. All re
sults can be generalized to the case of several mom
variables, or polydispersity in more than one quantity.

Now, F0 is essentially the excess free energy which
taken to depend onm only, and the same applies toF
by construction. The average in Eq. (4) may therefore
taken by constraining the mean size:

e2bF ­
Z

dm1Psm1de2bsF11F2d, (5)

wherePsm1d ­ kdsm1 2
PN1

i­1 siyN1dlprtns is the proba-
bility distribution for the mean size in the first system
(m1) taken over partitions with equala priori probabilities
(given m1, the mean size in the second system is fixe
by the moment equivalent of mass balance). Clearly, t
combinatorial functionPsm1d is the key to the problem. It
appears in the joint free energy as acombinatorial entropy,
kB ln Psm1d, replacing the entropy of the mixing term.

An exact result forPsm1d will be described in a longer
publication elsewhere [9]. It involves rather intractabl
integrals, and from a practical point of view it is not muc
use. In this Letter, I will confine myself to a much simple
but still very useful result which one obtains when th
first subsystem is taken to be very much smaller than t
second.
d

1370
TABLE I. Parent distributionpssd, cumulant generating functionhsud, and combinatorial
entropy per particle lnPsmdyN for Gaussian and Schulz parent distributions. Constants an
terms linear in the mean sizem have been dropped from the combinatorial entropy.

pssd hsud ln PsmdyN

expf2ss 2 sd2y2ygy
p

2py su 1 yu2y2 2sm 2 sd2y2y

sa21e2sybybaGsad 2a lns1 1 bud a ln m
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In this case,Psm1d becomes easier to calculate, as thesi

in the small system may be treated as independent rand
variables. By writing the moment generating function o
Psm1d as a product over moment generating functions o
pssd, and evaluating the resulting integral by the sadd
point method in the thermodynamic limit, one can show
that the combinatorial entropy per particle is given by
Legendre transform: lnPsm1dyN1 ­ hsud 1 m1u, where
m1 ­ 2≠hy≠u. The functionhsud is the cumulant gen-
erating function, defined byehsud ­

R
dspssde2su [10].

Table I gives the results for two standard distributions
It is interesting to see that the combinatorial entropy fo
a Gaussian distribution can be interpreted as an entrop
spring which tiesm to the mean size of the parent distri-
bution [11]. The strength is inversely proportional to the
variance of the parent distribution. For the Schulz distr
bution, note that the logarithmic divergence asm ! 0 pre-
vents the mean size from becoming unphysically negativ

The limiting case described above gives exact results f
two important classes of problems. The first is the the
modynamic stability of a homogeneous system (spinod
curves, critical points, etc.). This is exact because stab
ity can be probed by allowing fluctuations to take place i
a vanishingly small subregion. The second concerns t
cloud and shadow curves. These are exact because,
definition, only an infinitesimal amount of a second phas
has appeared. These arguments are qualitative, but form
proofs of the exactness of the present method in derivin
these properties will be presented elsewhere [9].

Spinodal curves, critical points, cloud curves an
shadow curves are of great interest in mapping out th
phase behavior of new models, or old models extended
include polydispersity. The new method may therefor
prove widely applicable and highly useful. It can be
used approximately for full phase behavior calculations
too, by considering two (or more) small systems, eac
separately in equilibrium with a large (reservoir) system.

As an example of the method in action, I now conside
polydisperse Flory-Huggins theory with a Schulz distribu
tion as the parent distribution. Results derived previous
using the traditional approach are recovered with ease. F
this case, the free energy density (in units ofkBT) is

f ­ r ln r 1 s1 2 fd lns1 2 fd 1 xfs1 2 fd

2 ar lnsfyrd , (6)

wherer is the chain number density (nondimensionalize
by the segment volumea3), f is the chain volume fraction,
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andx is Flory’s x parameter [2]. The first three terms in
Eq. (6) are standard. The last term is the combinator
entropy for the Schulz distribution (Table I). The advan
tage of the new approach is rapidly apparent, as the po
disperse problem has been reduced to two componentsr

andf.
The spinodal curve (SC) and critical point (CP) cond

tions may be calculated from Eq. (6) via the usual dete
minant conditions [8]:

1
1 2 f

2 2x 2
a

a 1 1
r

f2
­ 0 sSCd , (7)

1
s1 2 fd2 2

asa 1 2d
sa 1 1d2

r

f3 ­ 0 sCPd . (8)

These results should be supplemented by the constra
that f ­ LN r, whereLN ­ ab is the mean or number
average chain length for the parent distribution. Th
constraint must be imposed as the whole calculation
based on a combinatorial entropy which is derived fro
a given parent distribution. Applying the constraint an
writing LW ­ sa 1 1db and LZ ­ sa 1 2db for the
weight andZ-average chain lengths, respectively, give

1
1 2 f

2 2x 2
1

LW f
­ 0 sSCd , (9)

1
s1 2 fd2 2

LZ

L2
W

1
f2 ­ 0 sCPd . (10)

As promised, these are the exact results [2].
I have also calculated binodal curves in thesf, rd plane

numerically from the free energy Eq. (6) [12]. Figure 1
shows binodal curves, tie lines, spinodal curves, a
critical points superimposed for three values ofx. The
diagram gives an appealing geometric insight into th
problem, for instance, the slope of the tie lines indicate
a size partitioning effect, the more dense phase bei
enriched in long chains.

FIG. 1. Phase behavior of polydisperse Flory-Huggins theo
in the sf, rd plane for a Schulz distribution withLN ­
100, LW yLN ­ 1.5, for the free energy in Eq. (6). Shown
superimposed, in order of increasing size, are two-phase regi
for x ­ 0.55, 0.585, and 0.62. Binodals and tie lines are soli
lines, spinodal curves are dashed lines. The physicalf ­ LN r
constraint is a thick solid line.
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The heavy line in Fig. 1 is the physicalf ­ LN r

constraint. As discussed previously, only systems who
mean composition lies on this line are allowed. Thi
means that not all of the phase behavior shown in Fig.
is accessible. The extremities of phase separation
the f ­ LNr line are points where phase separatio
just starts to occur, and the locus of these points in th
physically accessiblesf ­ LN r, xd plane is the cloud
curve, shown in Fig. 2. The compositions of the phase
that just start to appear as the cloud curve is passed
not, in general, lie in the physical plane (they are th
compositions at the other ends of the cloud point tie line
in Fig. 1). These compositions may be projected onto th
physical plane to give a shadow curve, by ignoring th
value of r, for instance. The shadow curve obtained i
this way for the present problem is also shown in Fig. 2.

Figure 2 also includes the spinodal stability curve an
the critical point from Eqs. (9) and (10). The spinoda
curve and the cloud curve touch at the critical poin
which no longer lies at the minimum of either. This
distorted behavior is a well-known feature of polydispers
systems. Here it is seen to be due to the way thatregular
phase behavior insf, r, xd space is cut through by the
physical constraint. The shadow curve also passes throu
the critical point. All the curves shown in Fig. 2 are
exact, even though they have been constructed from ph
behavior in Fig. 1, which is only an approximate projectio
of the true phase behavior of the fully polydisperse system

Also shown in Fig. 2 is the phase behavior of th
monodisperse polymer with chain length equal toLN , the
mean chain length in the polydisperse system. Compari
it with the cloud curve of the polydisperse system, th
extent of phase separation is seen to be considera
enhanced in the latter–this is another well-known effe
of polydispersity.

Returning to more general considerations, one ca
consider the effect of polydispersity on thedynamicsof

FIG. 2. A cut through the phase behavior in Fig. 1 by th
physical sf ­ LN r, xd plane showing the cloud curve (solid
line), shadow curve (long-dashed line), spinodal curve (dash
line), and the critical point. Also shown for comparison is th
two phase region for the monodisperse Flory-Huggins theo
with the same mean chain length,L ­ 100.
1371
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phase separation. Here, very little work appears to ha
been done. It is certainly not clear whether mome
variables will prove to be as useful for analyzing th
dynamics as they are in constructing the equilibrium pha
behavior. A plausible scenario suggests itself thoug
on realizing that the overall density can be relaxed b
collective particle motion much more easily than th
moments. In a standard nomenclature, one might exp
r to be a fast variable and themn to be slow variables.
Phase separation might proceed in two stages: A fa
density relaxation to a phase equilibrium dictated b
quenching the moments to the mean values in the par
distribution, followed by a slow annealing of the moment
(with r tracking them as a slaved variable), as the syste
moves towards the true free energy minimum. This ar
certainly warrants further investigation.

Finally, the present analysis throws an interestin
sidelight on the Gibbs paradox, which suggests the
should be an entropy of mixing on bringing into contac
two systems of classically identical but distinguishab
(or labeled) particles. Actually, such “experiments” ar
realized every day in computer simulations since th
array index provides a label. An examination of Eqs. (3
and (4) indicates that, by the appropriate definition
the entropy of mixing in such a case can be made
vanish. These definitions are rigorously based, and are
natural ones to ensure extensivity. Essentially, the sa
resolution is described by Jaynes [13], who pointed o
that Gibbs himself had explained it, but in an untypicall
opaque manner [8]. It really turns on whether the partic
labels can be coupled to an external variable or not.
they can’t, one can define away the entropy associa
with them.

After this work was nearly complete, I learned from
P. Sollich and M. Cates [14] of an approach which
although based on distinctly different physical principle
is broadly equivalent to the one presented here. Pro
of this equivalence and further details of both method
will be presented elsewhere [9]. I thank them, and als
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P. Bladon, N. Clark, T. McLeish, and W. Poon, for
illuminating discussions.
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