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Projected Free Energies for Polydisperse Phase Equilibria

Peter Sollich* and Michael E. Cates

Department of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
(Received 15 August 1997

A “polydisperse” system has an infinite number of conserved densities. We give a rational procedure
for projecting its infinite-dimensional free energy surface onto a subspace comprising a finite number
of linear combinations of densities (“moments”), in which the phase behavior is then found as usual.
If the excesdree energy of the system depends only on the moments used, exact cloud, shadow, and
spinodal curves result; two-phase and multiphase regions are approximate, but refinable indefinitely by
adding extra moments. The approach is computationally robust and gives new geometrical insights into
the thermodynamics of polydispersity. [S0031-9007(97)05163-6]

PACS numbers: 05.20.-y, 61.25.Hq, 64.10.+h, 82.70.-y

The thermodynamics of mixtures of several chemicaby somehow reducing its dimensionality [3—6,8—17].
species is, since Gibbs, a well-established subject (seln this Letter we propose a new and general method,
e.g., [1]). But many systems arising in nature and in in-whereby we construct fromf[p(o)] an (optimally)
dustry contain, for practical purposes, an infinite numbeprojected free energy surface in a reduced subspace of
of distinct, though similar, chemical species. Often thesalensity variables. For these variables, we choose linear
can be classified by a parameter say, which could be combinations of densities, the “generalized moments”
the chain length in a polymeric system, or the particlem; = [do w;(0)p(o) of p(o), defined by certain
size in a colloid; both are routinely treated as continuousveight functionsw;(o); these are ordinary (nonnormal-
variables. In other cases, (see, e.g., [2-b]p instead a  ized) moments ifv; (o) = .
parameter distinguishing species of continuously varying The simplest imaginable case is where the free energy
chemical properties. The thermodynamics of polydispers depends only on a finite set & such moments:
sity (thus dgfined) is therefore of crucial interest to wide f = flmy), i=1....K. )
areas of science and technology.

Standard thermodynamic procedures [1] for constructln coexisting phases one demands equality of particle
ing phase equilibria in a system of voluniecontaining chemical potentials, defined ag(o) = 6f/dp(0) =
M different species can be understood geometrically i;(0f/dm;)wi(c) = >; wiwi(o), for all o. But this im-
terms of a free energy surfagép,) (with f = F/V) in plles.that.all “moment” chemical potentigls = af/aml-
the M-dimensional space of density variabjgs Tangent are likewise equal among phases. The osmotic pressures
planes tof define regions of coexistence, within which 11 of all phases also must be equal; simple algebra estab-
the free energy of the system is lowered by phase separlishes that—=I1 = f — > u;m;, which involves only the
tion. The volumes of coexisting phases follow from themomentsn; and their chemical potentiajg;. Finally, if
well-known “lever rule” [1]. Here “surface” and “plane” the overallo distribution is p® (o), and there arg co-
are used loosely, to denote manifolds of appropriate diexisting phases witlr distributionsp'®)(s), each occu-
mension. This procedure becomes unmanageable, bolying a fractiong® of the total volume(la = 1,..., p),
conceptually and numerically, in the limis/ — «) of a  then conservation of particles implies the usual lever rule
polydisperse system. There is now a separate conservé@r material balance) among specie¥;, ¢ p'“ (o) =
density p(o) for each value ofr; the overall density of p'”(c),Vo. Multiplying this by a weight functionw; (o)
particles isp = [do p(o). The free energy surface is and integrating oves shows that the lever rule also holds
f = flp(o)], which resides in an infinite dimensional for the moments:
space. Gibbs’ rule allows the coexistence of arbitrarily P
many thermodynamic phases. Z ¢(“)m,-(a) = m,(o). 2

Experimentally, one often restricts attention to the a=1
cloud curves and shadow curves (also referred to as dewhese results express the fact that any linear combination
bubble curves). For a fixed “shape” of polydispersityof conserved densities (a generalized moment) is itself
pla) = p(a)/p, these define as a function of the overalla conserved density in thermodynamics. Therefore, if
particle densityp (and temperaturel’) the onset of the free energy of the system depends only &n
two-phase equilibrium (cloud curve) and the density ofmomentsm, ..., mg we can view these as the densities
the corresponding minority phase (its shadow); see, e.gof K “quasispecies” of particles, and construct the phase
[3,6,7]. Theoretical work has likewise focused on at-diagram via the usual construction of tangencies and the
tempts to bring the problem into a more manageable forntever rule. Formally, this has reduced the problem to
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finite dimensionality by a projection, although this is chosen so as to minimize the free energy: they are treated
trivial here becausg, by construction, has no dependenceas “annealed.” If, as assumed aboyes= f(m;) depends
on any variables other thanthe (i = 1,...,K). only on the moments retained, this amountsiaximizing

Of course, it is uncommon for the free enerfyo obey the entropyin (3), while holding fixed the values of the
(). In particular, the “ideal gas” (or, for polymers, Flory- momentsn;.
Huggins) entropy term, in mixtures of many species, is At this point, the factoiR(o) in (3), which is immate-
definitely not of this form. On the other hand, in very rial if all conservation laws are strictly obeyed, becomes
many thermodynamic (especially mean field) models theentral. Indeed, maximizing the entropy over all distribu-
free energy takes the forfkg = 1) tions p(o) at fixed momentsn; yields

£ = Fom) + T [ doplo) tnlp(o)/R@)] = 1), (3) bio) = Rl o] 3 A1) @

in which the excessfree energyf doesdepend only on
K moments. Examples include polydisperse hard sphereghere the Lagrange multipliers are chosen to give
[8], polydisperse homo- and copolymers [2-5,9], and
van der Waals fluids with factorized interaction parame- m; = f dowi(o)R(0) eXF(Z /\iWi(U')>~ (5)
ters [10]. Note that, in the ideal gas term of (3), we have i
included a dimensional facta(co) inside the logarithm: The corresponding minimum value gfthen defines our
since the resulting contribution is linear in densities, thisprojected (i.e., annealed) free energy
has no effect in rigorous thermodynamics. However, it .
will play a central role in our approach. Spr(mi) = f + T(Z Aim; — mo>~ (6)

In principle, the phase equilibria stemming from (3) i
can be computed exactly by a finite algorithm. Specif-In the last termmy = [dop(o) is the “zeroth moment”
ically, the spinodal stability criterion involves &-  which is identical to the overall particle densjiydefined
dimensional square matrix [11-14] whereas calculatiorpreviously. If this is among the moments used for the
of p-phase equilibrium involves solution 0p — 1) (K +  projection, the resulting linear term can be dropped;
1) strongly coupled nonlinear equations. This methodotherwise, it must be retained (witthy now expressed
has certainly proved useful [2—4,9,10,14], but is cumberas a function of then;, via the ;).
some, particularly if one is interested mainly in cloud and Our maximum entropy method yields a free energy
shadow curves, rather than coexisting compositions deefy,(m;) which depends only on the chosen set of mo-
within multiphase regions [2,4,7,9]. Various ways of sim-ments: i.e., (6) is of the form (1) [18]. A finite di-
plifying the procedure exist [6,11,15-17], but there hasmensional phase diagram can now be constructed from it
been, up to now, no systematic alternative to the full comaccording to the usual rules. Obviously, though, the re-
putation. Note also that the nonlinear phase equilibriunsults now depend omR(o) which is formally a “prior
equations permit no simple geometrical interpretation odistribution” for the entropy maximization. To under-
qualitative insight akin to the familiar rules for construct- stand its thermodynamic role, we recall that our projected
ing phase diagrams from the free energy surface of a finithee energyf,,(m;) was constructed as the minimum of
mixture. flp(o)] at fixedm;; that is, f,,, is the lower envelope of

Our method instead proceeds by deriving from (3) athe projection off onto the moment subspace. Crucially,
“projected” free energy that depends only on a finite sethe shape of this envelope depends on how, by choosing
of moments. We argue that the most important momenta particular prior distributiorR (o), we “tilt” the infinite-
to treat correctly are those that actually appear in thelimensional free energy surfabeforeprojecting it.
excess free energy(m;). Accordingly, we divide the To find the optimum choice of prior, we note that
infinite-dimensional space o& distributions into two R(o) serves physically to determine which distributions
orthogonal subspaces: a “moment subspace,” whicl (o) lie within the maximum-entropy family (4) that the
contains all the degrees of freedomudfr) that contribute  annealed system can have. Typically, one is interested
to the momentsm; [this subspace is spanned by thein a system where a fixed overall “parent” (or “feed”)
weight functionsw;(o)], and a “transverse subspace” distribution p© (o) becomes subject to separation into
which contains all remaining degrees of freedom (asvarious phases. In such circumstances, we should gen-
can be varied without affecting the chosen moment®rally choose this parent distribution as our prie(g) =
m;). Physically, it is reasonable to expect that thesep© (o), thereby guaranteeing that it is contained within
“leftover” degrees of freedom play a relatively minor role the family (4). Having done this, we note that the anneal-
in the phase equilibria of the system, a view justifieding procedure will beexactly valid,to whatever extent
a posterioribelow. Accordingly, we now allow violations the o distributionsactually arisingin the various coexist-
of the lever rule, so long as these oca@glely in the ing phases of the system under st members of the
transverse space.The “transverse” degrees of freedom, family (4). [This statement of exactness, and similar ones
instead of obeying the strict particle conservation laws, aréelow, of course hold only if (3) is valid.]
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In fact, the condition just described does hold wheneveform (3), with an excess free energy (in unitsigfT) of
all but one of a set of coexisting phases are of infinitesf = —ym?, m; = [do op(o) [up to irrelevant terms
imal volume compared to the majority of phase. This islinear in p(o)]. This model differs only by a rescaling
because the- distributionp (o) of the majority phase is  of parameters (with powers of polymer molecular weight)
negligibly perturbed, whereas that in each minority phasérom the Flory-Huggins treatment of rando#&B copoly-
differs from this by an exponential Gibbs-Boltzmann fac-mers, in whichy is the usual interaction parameter amd
tor, of exactly the form required for (4). Accordingly, our is the proportion ofA monomers in a chain [2—4]. The
projection method yieldexactcloud curves and shadow model should show fractionation into an ever-increasing
curves. By the same argument, critical points (which innumber of phases ag is increased. It is therefore an
fact lie at the intersection of these two curves) are exactlynteresting test case for our projection approach (and the
determined. Moreover, all spinodals are also found exmethod of adding further moments), yet simple enough
actly by our annealing method. For, at a spinodal, theréor exact phase equilibrium calculations to remain feas-
exists an instability direction (in the full space) along ible, allowing detailed comparisons to be made.
which the curvature of the free energy vanishes; in all We consider phase separation from parent phases with
other directionsf has positive curvature. One can show o distributions of the formp (o) « expgAo) (for 0 =
that such an instability direction always connects neigho = 1); X is thereby fixed in terms of the parenial =
boring distributions within the same maximum entropy,,\”’. Figure 1 shows the exact coexistence curve for
fqmﬂy (4), gnd hence that only the free energy of such dis 50) = 0.6, along with the predictions from our projected
trlbuthns [i.e., the projected fre(aT energy with the parentat. o energy withs moments(m; = [do oip(o), i =
.R(U)] IS ngeded to calculate spinodals. The geometrica ,...,n) retained. Comparable results are found for other
interpretation of this result, and also proofs of it and the (g i
others stated above, will be given elsewhere [19]. n - Even for the minimal set Qf momen(s = 1.) the .

The method does, however, give only approximate reboint whe_re phase separatllon.flrst occurs on increasing
sults for coexistences involving finite amounts of differentX. is predicted correctly (this is a cloud point for the
phases. This is because linear combinations of different given parent). As more moments are added, the anqealed
distributions obeying (4), corresponding to two (or more)coems.tence curves approach the exact one to hlgher
phases arising from the same parépt® (o) = R(o)] and higher precision [20]. As expected, the pl_’ECISIO.n
do not necessarily add to recover the parent distributiorqecr.eases. at high, where fractlonaFec_i phases prollfergte,
itself. Moreover, according to Gibbs' phase rule, a pro-'n this region, the number of coexisting phases predicted

jected free energy depending emmoments will not nor- by the projection method increases with However, it

mally predict more tham + 1 coexisting phases, whereas IS not alwaysfeg%%l Fm h+ 1, asl (_)?ﬁ m'gT‘t expect frCJtm
a polydisperse system can in principle separate into a naive use of LILDS phase rule, three-pnase Coexistence,
r example, is first predicted for = 4 [21]. Note that

arbitrary number of phases. Both of these shortcoming ", .
can be overcome by systematically including additionafne stability of the results to the addition of extra moments

moments within the annealing procedure. (The above ex-
act results are unaffected, because these do not exclude a
null dependence of on certain of them,;.) Indeed, by 50
adding further moments one can indefinitely expand the
maximum-entropy family (4) ofr distributions, thereby
approaching with increasing precision the actual distri-
butions in all phases present; this yields phase diagrams
of ever-refined accuracy. How quickly convergence to
the exact results occurs depends on the choice of weights
functions for the additional moments; this will be quanti- 20
fied elsewhere [19].
To demonstrate the power of our approach, we consider (¢ [~
a specific example. This is a simplified model of chemical
fractionation, in which one considers species of continu- , ‘ ,
ously variable chemical character (such as aromaticity) 0.1 0.3 0.5 0.7 0.9
governed by a parameter between 0 and 1. We sup- m
pose that the interaction energy between species varies as ) o )
(¢ — o')?, so that the most different species repel eaCH:I((OB). 1. Coexistence curves for a parent distribution with

other most strongly. For simplicity, we take a molten sys-"11_ — 0.6. Shown are the values of, of the coexisting
tem. choosing volume units so that the overall densitv i hases; horizontal lines guide the eye where new phases appear.
! 9 Y 'turves are labeled by, the number of moments retained

constrained a§ dop(c) = 1. Within a mean-field treat- in the projected free energy. Predictions for= 10 are
ment, the system is then described by a free energy of thedistinguishable from an exact calculation (in bold).

1
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provides, in this example, a good test of convergence on *Electronic address: P.Sollich@ed.ac.uk
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