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A “polydisperse” system has an infinite number of conserved densities. We give a rational proced
for projecting its infinite-dimensional free energy surface onto a subspace comprising a finite num
of linear combinations of densities (“moments”), in which the phase behavior is then found as us
If the excessfree energy of the system depends only on the moments used, exact cloud, shadow,
spinodal curves result; two-phase and multiphase regions are approximate, but refinable indefinite
adding extra moments. The approach is computationally robust and gives new geometrical insights
the thermodynamics of polydispersity. [S0031-9007(97)05163-6]

PACS numbers: 05.20.–y, 61.25.Hq, 64.10.+h, 82.70.–y
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The thermodynamics of mixtures of several chemic
species is, since Gibbs, a well-established subject (s
e.g., [1]). But many systems arising in nature and in in
dustry contain, for practical purposes, an infinite numb
of distinct, though similar, chemical species. Often the
can be classified by a parameters, say, which could be
the chain length in a polymeric system, or the partic
size in a colloid; both are routinely treated as continuou
variables. In other cases, (see, e.g., [2–5])s is instead a
parameter distinguishing species of continuously varyin
chemical properties. The thermodynamics of polydispe
sity (thus defined) is therefore of crucial interest to wid
areas of science and technology.

Standard thermodynamic procedures [1] for construc
ing phase equilibria in a system of volumeV containing
M different species can be understood geometrically
terms of a free energy surfacefsrjd (with f ­ FyV ) in
theM-dimensional space of density variablesrj . Tangent
planes tof define regions of coexistence, within which
the free energy of the system is lowered by phase sepa
tion. The volumes of coexisting phases follow from th
well-known “lever rule” [1]. Here “surface” and “plane”
are used loosely, to denote manifolds of appropriate d
mension. This procedure becomes unmanageable, b
conceptually and numerically, in the limitsM ! `d of a
polydisperse system. There is now a separate conser
densityrssd for each value ofs; the overall density of
particles isr ­

R
ds rssd. The free energy surface is

f ­ ffrssdg, which resides in an infinite dimensiona
space. Gibbs’ rule allows the coexistence of arbitrari
many thermodynamic phases.

Experimentally, one often restricts attention to th
cloud curves and shadow curves (also referred to as de
bubble curves). For a fixed “shape” of polydispersit
r̃ssd ­ rssdyr, these define as a function of the overa
particle densityr (and temperatureT ) the onset of
two-phase equilibrium (cloud curve) and the density o
the corresponding minority phase (its shadow); see, e.
[3,6,7]. Theoretical work has likewise focused on a
tempts to bring the problem into a more manageable for
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by somehow reducing its dimensionality [3–6,8–17]
In this Letter we propose a new and general metho
whereby we construct fromffrssdg an (optimally)
projected free energy surface in a reduced subspace
density variables. For these variables, we choose line
combinations of densities, the “generalized moment
mi ­

R
ds wissdrssd of rssd, defined by certain

weight functionswissd; these are ordinary (nonnormal-
ized) moments ifwissd ­ si .

The simplest imaginable case is where the free ener
f depends only on a finite set ofK such moments:

f ­ fsmid, i ­ 1, . . . , K . (1)

In coexisting phases one demands equality of partic
chemical potentials, defined asmssd ­ dfydrssd ­P

is≠fy≠midwissd ­
P

i miwissd, for all s. But this im-
plies that all “moment” chemical potentialsmi ; ≠fy≠mi

are likewise equal among phases. The osmotic pressu
P of all phases also must be equal; simple algebra esta
lishes that2P ­ f 2

P
i mimi , which involves only the

momentsmi and their chemical potentialsmi. Finally, if
the overalls distribution isrs0dssd, and there arep co-
existing phases withs distributionsrsadssd, each occu-
pying a fractionfsad of the total volumesa ­ 1, . . . , pd,
then conservation of particles implies the usual lever ru
(or material balance) among species:

P
a fsadrsadssd ­

rs0dssd, ;s. Multiplying this by a weight functionwissd
and integrating overs shows that the lever rule also holds
for the moments:

pX
a­1

fsadm
sad
i ­ m

s0d
i . (2)

These results express the fact that any linear combinat
of conserved densities (a generalized moment) is its
a conserved density in thermodynamics. Therefore,
the free energy of the system depends only onK
momentsm1, . . . , mK we can view these as the densitie
of K “quasispecies” of particles, and construct the pha
diagram via the usual construction of tangencies and t
lever rule. Formally, this has reduced the problem t
© 1998 The American Physical Society 1365
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finite dimensionality by a projection, although this i
trivial here becausef, by construction, has no dependenc
on any variables other than themi si ­ 1, . . . , Kd.

Of course, it is uncommon for the free energyf to obey
(1). In particular, the “ideal gas” (or, for polymers, Flory
Huggins) entropy term, in mixtures of many species,
definitely not of this form. On the other hand, in ver
many thermodynamic (especially mean field) models t
free energy takes the formskB ­ 1d

f ­ f̃smid 1 T
Z

dsrssd slnfrssdyRssdg 2 1d , (3)

in which theexcessfree energyf̃ doesdepend only on
K moments. Examples include polydisperse hard sphe
[8], polydisperse homo- and copolymers [2–5,9], an
van der Waals fluids with factorized interaction param
ters [10]. Note that, in the ideal gas term of (3), we ha
included a dimensional factorRssd inside the logarithm:
since the resulting contribution is linear in densities, th
has no effect in rigorous thermodynamics. However,
will play a central role in our approach.

In principle, the phase equilibria stemming from (3
can be computed exactly by a finite algorithm. Spec
ically, the spinodal stability criterion involves aK-
dimensional square matrix [11–14] whereas calculati
of p-phase equilibrium involves solution ofsp 2 1d sK 1

1d strongly coupled nonlinear equations. This metho
has certainly proved useful [2–4,9,10,14], but is cumbe
some, particularly if one is interested mainly in cloud an
shadow curves, rather than coexisting compositions de
within multiphase regions [2,4,7,9]. Various ways of sim
plifying the procedure exist [6,11,15–17], but there h
been, up to now, no systematic alternative to the full co
putation. Note also that the nonlinear phase equilibriu
equations permit no simple geometrical interpretation
qualitative insight akin to the familiar rules for construc
ing phase diagrams from the free energy surface of a fin
mixture.

Our method instead proceeds by deriving from (3)
“projected” free energy that depends only on a finite s
of moments. We argue that the most important mome
to treat correctly are those that actually appear in t
excess free energỹfsmid. Accordingly, we divide the
infinite-dimensional space ofs distributions into two
orthogonal subspaces: a “moment subspace,” wh
contains all the degrees of freedom ofrssd that contribute
to the momentsmi [this subspace is spanned by th
weight functionswissd], and a “transverse subspace
which contains all remaining degrees of freedom (
can be varied without affecting the chosen momen
mi). Physically, it is reasonable to expect that the
“leftover” degrees of freedom play a relatively minor rol
in the phase equilibria of the system, a view justifie
a posterioribelow. Accordingly, we now allow violations
of the lever rule, so long as these occursolely in the
transverse space.The “transverse” degrees of freedom
instead of obeying the strict particle conservation laws, a
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chosen so as to minimize the free energy: they are trea
as “annealed.” If, as assumed above,f̃ ­ f̃smid depends
only on the moments retained, this amounts tomaximizing
the entropyin (3), while holding fixed the values of the
momentsmi .

At this point, the factorRssd in (3), which is immate-
rial if all conservation laws are strictly obeyed, becom
central. Indeed, maximizing the entropy over all distrib
tionsrssd at fixed momentsmi yields

rssd ­ Rssd exp

µX
i

liwissd
∂

, (4)

where the Lagrange multipliersli are chosen to give

mi ­
Z

dswissdRssd exp

µX
i

liwissd
∂

. (5)

The corresponding minimum value off then defines our
projected (i.e., annealed) free energy

fpr smid ­ f̃ 1 T

µX
i

limi 2 m0

∂
. (6)

In the last term,m0 ­
R

dsrssd is the “zeroth moment”
which is identical to the overall particle densityr defined
previously. If this is among the moments used for th
projection, the resulting linear term can be droppe
otherwise, it must be retained (withm0 now expressed
as a function of themi , via theli).

Our maximum entropy method yields a free energ
fpr smid which depends only on the chosen set of m
ments: i.e., (6) is of the form (1) [18]. A finite di-
mensional phase diagram can now be constructed from
according to the usual rules. Obviously, though, the r
sults now depend onRssd which is formally a “prior
distribution” for the entropy maximization. To under
stand its thermodynamic role, we recall that our project
free energyfpr smid was constructed as the minimum o
ffrssdg at fixedmi ; that is,fpr is the lower envelope of
the projection off onto the moment subspace. Crucially
the shape of this envelope depends on how, by choos
a particular prior distributionRssd, we “tilt” the infinite-
dimensional free energy surfacebeforeprojecting it.

To find the optimum choice of prior, we note tha
Rssd serves physically to determine which distribution
rssd lie within the maximum-entropy family (4) that the
annealed system can have. Typically, one is interes
in a system where a fixed overall “parent” (or “feed”
distribution rs0dssd becomes subject to separation int
various phases. In such circumstances, we should g
erally choose this parent distribution as our prior,Rssd ­
rs0dssd, thereby guaranteeing that it is contained with
the family (4). Having done this, we note that the anne
ing procedure will beexactly valid, to whatever extent
thes distributionsactually arisingin the various coexist-
ing phases of the system under studyare members of the
family (4). [This statement of exactness, and similar on
below, of course hold only if (3) is valid.]
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In fact, the condition just described does hold whenev
all but one of a set of coexisting phases are of infinite
imal volume compared to the majority of phase. This
because thes distributionrs0dssd of the majority phase is
negligibly perturbed, whereas that in each minority pha
differs from this by an exponential Gibbs-Boltzmann fac
tor, of exactly the form required for (4). Accordingly, ou
projection method yieldsexactcloud curves and shadow
curves. By the same argument, critical points (which
fact lie at the intersection of these two curves) are exac
determined. Moreover, all spinodals are also found e
actly by our annealing method. For, at a spinodal, the
exists an instability direction (in the full space) alon
which the curvature of the free energy vanishes; in a
other directionsf has positive curvature. One can sho
that such an instability direction always connects neig
boring distributions within the same maximum entrop
family (4), and hence that only the free energy of such d
tributions [i.e., the projected free energy with the paren
Rssd] is needed to calculate spinodals. The geometric
interpretation of this result, and also proofs of it and th
others stated above, will be given elsewhere [19].

The method does, however, give only approximate r
sults for coexistences involving finite amounts of differen
phases. This is because linear combinations of differens

distributions obeying (4), corresponding to two (or more
phases arising from the same parentfrs0dssd ­ Rssdg
do not necessarily add to recover the parent distributi
itself. Moreover, according to Gibbs’ phase rule, a pr
jected free energy depending onn moments will not nor-
mally predict more thann 1 1 coexisting phases, wherea
a polydisperse system can in principle separate into
arbitrary number of phases. Both of these shortcomin
can be overcome by systematically including addition
moments within the annealing procedure. (The above e
act results are unaffected, because these do not exclu
null dependence of̃f on certain of themi.) Indeed, by
adding further moments one can indefinitely expand t
maximum-entropy family (4) ofs distributions, thereby
approaching with increasing precision the actual dist
butions in all phases present; this yields phase diagra
of ever-refined accuracy. How quickly convergence
the exact results occurs depends on the choice of weig
functions for the additional moments; this will be quant
fied elsewhere [19].

To demonstrate the power of our approach, we consid
a specific example. This is a simplified model of chemic
fractionation, in which one considers species of contin
ously variable chemical character (such as aromatici
governed by a parameters between 0 and 1. We sup-
pose that the interaction energy between species varie
ss 2 s0d2, so that the most different species repel ea
other most strongly. For simplicity, we take a molten sy
tem, choosing volume units so that the overall density
constrained as

R
dsrssd ­ 1. Within a mean-field treat-

ment, the system is then described by a free energy of
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form (3), with an excess free energy (in units ofkBT ) of
f̃ ­ 2xm2

1, m1 ­
R

ds srssd [up to irrelevant terms
linear in rssd]. This model differs only by a rescaling
of parameters (with powers of polymer molecular weight
from the Flory-Huggins treatment of randomAB copoly-
mers, in whichx is the usual interaction parameter ands

is the proportion ofA monomers in a chain [2–4]. The
model should show fractionation into an ever-increasin
number of phases asx is increased. It is therefore an
interesting test case for our projection approach (and th
method of adding further moments), yet simple enoug
for exact phase equilibrium calculations to remain feas
ible, allowing detailed comparisons to be made.

We consider phase separation from parent phases w
s distributions of the formrssd ~ expslsd (for 0 #

s # 1); l is thereby fixed in terms of the parentalm1 ­
m

s0d
1 . Figure 1 shows the exact coexistence curve fo

m
s0d
1 ­ 0.6, along with the predictions from our projected

free energy withn momentssmi ­
R

ds sirssd, i ­
1, . . . , nd retained. Comparable results are found for othe
m

s0d
1 . Even for the minimal set of momentssn ­ 1d the

point where phase separation first occurs on increasin
x is predicted correctly (this is a cloud point for the
given parent). As more moments are added, the anneal
coexistence curves approach the exact one to high
and higher precision [20]. As expected, the precisio
decreases at highx, where fractionated phases proliferate;
in this region, the number of coexisting phases predicte
by the projection method increases withn. However, it
is not always equal ton 1 1, as one might expect from
a naive use of Gibbs’ phase rule; three-phase coexistenc
for example, is first predicted forn ­ 4 [21]. Note that
the stability of the results to the addition of extra moment

FIG. 1. Coexistence curves for a parent distribution with
m

s0d
1 ­ 0.6. Shown are the values ofm1 of the coexisting

phases; horizontal lines guide the eye where new phases appe
Curves are labeled byn, the number of moments retained
in the projected free energy. Predictions forn ­ 10 are
indistinguishable from an exact calculation (in bold).
1367
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provides, in this example, a good test of convergence
the coexistence curves.

For the computational implementation of both the an
nealing and the exact method we used a Newton-Raphs
nonlinear equation solver. The annealed calculation turn
out to be significantly more robust with respect to th
choice of initial values, the size ofx increments, etc.,
due to an effective decoupling of the equations: Equa
ity of chemical potentials is achieved using the momen
contained in the excess free energy, while the lever ru
is satisfied (increasingly accurately) using the remainin
moments [19]. This advantage should be much more pr
nounced in more complex cases, as should savings in co
puter time (which are modest in our simple example).

With exact results for cloud and shadow curves, crit
cal points and spinodals, as well as refinably accura
coexistence curves and multiphase regions, our anneal
method allows rapid and accurate computation of th
phase behavior of many polydisperse systems. Moreov
by establishing the link to a projected free energyfpr smid
as a function of a finite set of conserved densitie
mi , it restores to the problem much of the geometrica
interpretation and insight (as well as the computation
methodology) associated with phase diagrams for fini
mixtures. This contrasts with procedures commonly use
for systems in which the excess free energy involve
a finite set of moments (3) [2–5,9,10]. Some previou
approximations to that problem have used (generalize
moments as coordinates; see, e.g., [11,14,15,17,22]. O
annealing method provides a rational basis for the
methods and, by a careful choice of prior, guarantees th
many properties of interest are found exactly.

Finally, our method may extend to models for which
the excess free energycannotbe written directly in terms
of a finite number of moments as in (3). For example
many mean-field theories correspond to a variational mi
imization of the free energy:F # kEl0 2 TS0, where
subscript 0 refers to a trial Hamiltonian [23]. In such a
case, one might choose tofirst make a physically moti-
vated decision about which (and how many) momentsmi

to keep, and then include among the variational param
ters the annealed transverse degrees of freedom. T
would lead directly to a mean-field estimate of the pro
jected free energy without assuming Eq. (3). Note that
good choice of priorRssd will again be important. Al-
though no exact results can be guaranteed, this appro
may form a promising basis for future developments.

After this work was substantially complete, we learne
from P. B. Warren [24] that he has independently deve
oped an approach which, though based on distinctly d
ferent principles, yields a formalism broadly equivalent t
our own [19]. We thank him, and also N. Clarke, R. M. L
Evans, T. McLeish, P. Olmsted, and W. C. K. Poon, fo
helpful discussions. P. S. acknowledges support throu
a Royal Society Dorothy Hodgkin Fellowship.
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