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Resonance Phenomena of a Solitonlike Extended Object in a Bistable Potential
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We investigate the dynamics of a soliton that behaves as an extended particle. The soliton motion in
an effective bistable potential can be chaotic in a similar way as the Duffing oscillator. We generalize
the concept of geometrical resonance to spatiotemporal systems and apply it to design a nonfeedback
mechanism of chaos control using localized perturbations. We show the existence ofsolitonic stochastic
resonance. [S0031-9007(98)05332-0]
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The soliton dynamics in inhomogeneous media [1
5], the spatiotemporal chaos [4,6–10], the chaos contr
[11–15], and diverse types of resonance phenomena [1
22] have become the object of intensive study in rece
years (although rarely have these phenomena been stud
simultaneously).

In the present Letter we investigate a solitonic mod
perturbed by inhomogeneous forces [4,5], for whic
the exact solution describing the stationary equilibrium
solitonic state can be obtained. Furthermore, the stabil
problem for this solution can be solved exactly. Th
effective potential for the soliton motion can be bistabl
depending on the system parameters. Using an additio
external periodic force we can have the soliton jumpin
chaotically between the two potential wells (like in
the Duffing oscillator) [23]. We prove that changes
of the soliton shape and the waveform of the extern
perturbations are very relevant to the soliton’s dynamic
as a whole. We generalize the concept of geometric
resonance [22] to spatiotemporal systems. This conce
can be used to design a nonfeedback mechanism of ch
control [13,14]. In our case, this mechanism can b
applied in a localized way in space. Finally, we show
the existence of solitonic stochastic resonance (SSR).

We are interested in equations of the type

ftt 2 fxx 1 Rsf, ft, xd 2 Gsfd

­ Fsxd 1 Psf, ftdqsx, td , (1)

where Gsfd ­ 2
≠Usfd

≠f ; Usfd is a potential that pos-
sesses at least two minima [24,25];Rsf, ft, xd is a dis-
sipative term, which in general can be nonlinear [9], an
the damping coefficient can depend onx; Fsxd is an inho-
mogeneous force, andPsf, ftdqsx, td is a general tempo-
ral perturbation. Many systems are described by this ty
of equations, including charge density waves, Josephs
junctions, and structural phase transitions [26].

Problems related to Eq. (1) present extraordinary math
matical difficulties. Even if we are to solve [for case
Psf, ftdqsx, td ; 0] the stability problem of a stationary
soliton placed on an equilibrium position created by th
inhomogeneities [4,5], this task requires the making of b
approximations [2]. The most common approximation i
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to consider the soliton as a structureless pointlike partic
[2] (in this case the coordinate of the soliton center o
mass and its velocity are the only dynamical variables
Although this is a valid approximation in many cases
our work [4,5] has shown that, in general, the interna
dynamics plays a fundamental role.

Besides the applications of thef4 equation in phase
transition theory [26], it is amodel systemfor topological
solitons in general. Let us consider as an example th
perturbedf4 model,

ftt 2 fxx 1 gft 2
1
2 sf 2 f3d ­ Fsxd , (2)

where

Fsxd ­ F1sxd ;
1
2

AsA2 2 1d tanhsBxd

1
1
2

As4B2 2 A2d
sinhsBxd

cosh3sBxd
.

The inhomogeneities are chosen in order to hav
some important properties. The exact stationary solutio
for the soliton equilibrated by the inhomogeneities in
the point x ­ 0 can be obtainedfk ­ A tanhsBxd. The
stability problem of this solution can be solved exactly
The force F1sxd possesses the interesting property to
be topologically equivalent (in the sense of catastroph
theory [27]) to a pitchfork bifurcation, allowing us to
have an effective potential (for the soliton) with one or
two wells, depending on the system parameters. Th
system is generic and structurally stable. Therefor
the results obtained in this Letter can be generalize
qualitatively to other systems topologically equivalent to
that described by Eq. (2). The forceFsxd permits us
to observe important phenomena which occur with th
participation of the internal soliton dynamics including
the appearance of a great number of internal modes a
the soliton destruction due to the instability of the shap
mode in some special situations [4,5].

The stability analysis [4,5] which considers
small perturbations around the soliton [fsx, td ­
fksxd 1 fsxdelt ] leads to the eigenvalue problem
L̂f ­ Gf, where L̂ ­ 2≠2

x 1 s 3
2 A2 2

1
2 2

3A2

2 cosh2sBxd d,
G ­ 2sl2 1 gld.
© 1998 The American Physical Society 1361
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The eigenvalues of the discrete spectrum are given
the expressionGn ­ 2

1
2 1 B2sL 1 2Ln 2 n2d, where

LsL 1 1d ­ 3A2

2B2 . The stability condition of the equilib-
rium pointx ­ 0 (for the soliton) is defined by the eigen-
value of the translational mode [f0sxd ­ cosh2LsBxd]:
B2L 2

1
2 . 0. A global topological analysis and the in-

vestigation of the infinity [5] allow us to have complete
qualitative information of the soliton dynamics. When th
equilibrium position for the soliton is unstable and the ab
solute value of the eigenvalue corresponding to the tran
lational mode is sufficiently high, the first shape mod
[ f1sxd ­ sinhsBxd cosh2LsBxd], and even other internal
modes, can be unstable too, producing the soliton destr
tion [5]. We have at least two interesting situations: I
A2 . 1 and 2LB2 . 1, then there exists only one sta-
ble equilibrium point for the soliton (x00 ­ 0). If A2 . 1
and 2LB2 , 1, a pitchforklike bifurcation occurs, and
we have two stable equilibrium points (x01 , 0, x02 . 0)
(the pointx00 ­ 0 becomes unstable). It is important to
stress that the bifurcation does not occur at the point w
would expect when considering the soliton as a structur
less point particle [in this case the number of equilibrium
positions depend on the number of zeros of forceFsxd].

If the system, in the bistable case, is perturbed b
an additional periodic force fitted to the shape of th
translational mode [4,9] [in Eq. (1) we putPsf, ftd ; 1],
then we can have similar situations to those of the Duffin
oscillator [23]. But remember that in this case what i
jumping between the potential wells is an extended obje
with a very complicated internal dynamics. On the othe
hand, for sufficiently high values ofjG0j for the unstable
position, the soliton can bifurcate [5] in an antisoliton
(which would feel the middle position as a stable one
and two solitons, each of which would move towards on
of the wells.

The recently formulated concept of geometrical reso
nance (GR) [22] can be very useful in this contex
Generalizing this concept for spatiotemporal systems w
definefGRsx, td as a GR solution of Eq. (1) if it satisfies
the condition

RsfGR, ≠tfGR, xd ­ PsfGR, ≠tfGRdqGRsx, td . (3)

In this case there exists (local) conservation of energy,

H ;
Z `

2`

"
1
2

√
≠fGR

≠t

!2

1
1
2

√
≠fGR

≠x

!2

1 UsfGRd 2 FsxdfGR 1 C

#
dx . (4)

If we want to observe a GR situation, we should use
qGRsx, td such that it satisfies the GR condition (3).

Consider the Eq. (1) withR ­ gft, P ­ 1, Gsfd ­
1
2 sf 2 f3d, andFsxd as defined in (2).

We assume that the stability conditionB2L 2
1
2 . 0

for the equilibrium positionx ­ 0 holds. In this case we
can write an approximate solution forfsx, td (q ; 0),
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fsx, td ­ A tanhsBxd 1
h00 cossv0t 1 u0d

coshLsBxd
, (5)

wherev
2
0 ­ G0.

Thus, for small values ofh00 the perturbation

qGRsx, td ­ 2
v0h00g sinsv0t 1 u0d

coshLsBxd
(6)

satisfies the GR condition. This explains a whole se
ries of experiments performed in [5,9]. There thef4

kink confined in a potential well created by the inhomo
geneityFsxd was perturbed by the time-dependent forc
(6). The authors have got resonances of the translatio
mode practically without deformation of the kink profile.
Chaotic behavior is obtained only for high values of th
perturbation amplitude, when (5) is not a GR solution any
more. Meanwhile, if we use a different time-dependen
force [e.g.,qsx, td ­ r0 cosvt] which does not satisfy
the GR condition, we will obtain irregular behavior in
time and space with much smaller amplitudes.

The GR [22] provides a mechanism for nonfeedbac
control of chaos.

Suppose we have the following equation:

ftt 2 fxx 1 gft 2
1
2

sf 2 f3d

­ Fsxd 2 P0
cossvtd

cosh2sBxd
1 Fcsx, td . (7)

We assume that for certain initial conditions Eq. (7) is i
a chaotic regime providedFcsx, td ; 0.

We are left with the problem of eliminating the chaotic
motion using controlFcsx, td. Additionally, it is expected
that the control driving term is small and localized in
space. In order to do this we should select the contr
term in such a way that the solution will be sufficiently
close to aT 0 periodic GR solution.

We can choose the control function in the form

Fcsx, td ­
gc cossvct 1 ucd

coshLsBxd
. (8)

Using the concept of “almost adiabatic invariant” [22,28]
we arrive at a condition for the control parameters*Z `

2`
2g

√
≠fGR

≠t

!2

2 P0
≠fGR

≠t
cossvtd

cosh2sBxd
1

gc
≠fGR

≠t
cossvct 1 ucd

coshLsBxd
dx

+
T 0

­ 0 .(9)

The fact that we have taken (8) associated with th
translational mode (which approximately satisfies the G
condition) always allows us to find control parameter
(with small gc) in order to suppress chaos. An Arnold-
like tongue structure, similar to that observed in [22], ca
be obtained here. In Fig. 1 we show the results of th
application of the localized nonfeedback control.
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FIG. 1. Phase portraits for the motion of the soliton cent
of mass in Eq. (7);Fsxd is defined as in Eq. (2) (B ­ 1y2).
(a) Chaotic motion in the absence of control [Fcsx, td ; 0],
g ­ 0.1, A ­ 1.5, P0 ­ 1, andv ­ 0.65. (b) Periodic motion
as a result of the application of nonfeedback control,vc ­
0.065, gc ­ 0.35, anduc ­ 0.

Note that the validity of the concept of GR as
mechanism for chaos control is not limited to the ca
in which the unperturbed equation can be solved exac
er

a
se
tly.

Using some topological analysis it is possible to guess th
“shape” of the GR solution, and then through the concep
of almost adiabatic invariantsk dHffGRg

dt lT 0 ø 0d one can
obtain the conditions such that the solution will be clos
to a GR solution inside of a “mode-locked” tongue.

The system we have presented in this Letter with
solitonlike extended object moving in an effective bistable
potential can also be useful for studying other phenomen
e.g., the spatiotemporal stochastic resonance (SR) for t
motion of an extended state with complicated interna
dynamics.

Consider the equation

ftt 2 fxx 1 gft 2
1
2 sf 2 f3d ­ Fsxd 1 qsx, td ,

(10)
where

Fsxd ­

8<: Bs4B2 2 1d tanhfBsx 1 x0dg for x , 0 ,
0 for x ­ 0 ,
Bs4B2 2 1d tanhfBsx 2 x0dg for x . 0 ;

(11)
qsx, td ­

Ω
fP0 cossvtd 1 hsx, tdg cosh22fBsx 1 x0dg for x , 0 ,
fP0 cossvtd 1 hsx, tdg cosh22fBsx 2 x0dg for x . 0 ;

(12)
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con-
ar,
here 4B2 . 1. The forcesFsxd and qsx, td are defined
by Eqs. (11) and (12) in such a way that there are tw
equilibrium points for the soliton and the motion in eac

well is very close to the GR condition. In the absence
the white noisehsx, td [khsx, tdl ­ 0, khsx, tdhsx0, t0dl ­
2Ddsx 2 x0ddst 2 t0d], the periodic force above is unable
to make the soliton jump between the wells.

When we switch on the noise, it is possible to observe
maximum in the graph of the signal-to-noise ratio (SNR
versus D (see Fig. 2). Here as the “signal” we take
the time series of the soliton center-of-mass coordina

xc.m. ­

Rly2

2ly2
xf2

x dxRly2

2ly2
f2

x dx
. The SNR is measured following the

traditional method [18].

FIG. 2. Two aspects of the solitonic stochastic resonanc
(a) There is a maximum of the SNR at a critical value o
noise intensity. (b) Synchronization of the stochastic jump
with the periodic perturbation linked with translational mode o
the soliton. (P0 ­ 0.04, v ­ 0.01, x0 ­ 2.5, andB ­ 0.7.)
o

f
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The maximum synchronization is obtained with a sign
associated with the translational mode. In this conte
Fig. 3 shows that the deformation of the kink profile a
the SSR is minimal. These results allow us to pred
the optimum entertainment of the noise by means
a periodic signal, not necessarily a simple sinusoid
signal but a more complex spatiotemporal function. T
stochastic resonance will depend on the characteri
shape of the kink and the waveform of the perturbati
(in time and space). A manifestation of this fact
the following phenomenon: if instead of the translation
mode in perturbation (12) we use the first shape mo
then we do not observe SSR.

Even whenFsxd has three zeros, if we are in the
presence of an extended object, the bistability is no
sufficient condition for the stochastic resonance. T
extended object should “feel” the bistability, and th
internal modes should be stable in the vicinity of a
the equilibrium points, including the central equilibrium
point which is unstable for the translational mode. O
the other hand, if the eigenvaluejG0j corresponding to
the unstable equilibrium position in the bistable potent
is very high, then the first shape mode can be unsta
too and the soliton will bifurcate in two solitons and on
antisoliton. This is what occurs when the parameters
Eq. (11) are such thatB2s4B2 2 1d tanhsBx0d .

23
50 . The

center of mass of this “three-particle structure” is alwa
oscillating aroundx ­ 0, and therefore there is no SSR.

The spatiotemporal stochastic resonance has been
sidered in some recent papers [19,21]. In particul
1363
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FIG. 3. Spatiotemporal evolution of the kink soliton at the
stochastic resonance. Note that there is a minimal deformat
of the kink profile.

Ref. [19] deals with thef4 equation. However, the
SSR presented here is a completely new phenomen
there the behavior of the fieldf is taken for the signal
and the important bistability is in the potentialUsfd,
whereas in our work the relevant signal is the time seri
for the coordinate of the soliton’s center of mass. I
Ref. [19] there is no inhomogeneous forceFsxd. The
spatiotemporal stochastic resonance studied there d
not depend onFsxd. In our case the potentialUsfd is
important for the existence of the soliton solution [24
but it is the bistability inx, created byFsxd which is the
key for the SSR. And, as we have seen in this Letter, n
for everyFsxd the SSR exists.

In general, we prove that changes of the soliton sha
are very relevant to its dynamics as a whole. Additionall
the waveform of the perturbation is crucial for all the reso
nance phenomena, including the nonfeedback mechan
of the chaos control and the stochastic resonance. We
lieve that these phenomena are relevant to other syste
where there is an extended state with a complicated int
nal dynamics moving in a nonlinear potential force.
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