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Resonance Phenomena of a Solitonlike Extended Object in a Bistable Potential
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We investigate the dynamics of a soliton that behaves as an extended particle. The soliton motion in
an effective bistable potential can be chaotic in a similar way as the Duffing oscillator. We generalize
the concept of geometrical resonance to spatiotemporal systems and apply it to design a nonfeedback
mechanism of chaos control using localized perturbations. We show the existesalitarfic stochastic
resonance. [S0031-9007(98)05332-0]

PACS numbers: 03.40.Kf, 03.65.Ge, 05.40.+j, 05.45.+b

The soliton dynamics in inhomogeneous media [1-to consider the soliton as a structureless pointlike particle
5], the spatiotemporal chaos [4,6—10], the chaos contrdR] (in this case the coordinate of the soliton center of
[11-15], and diverse types of resonance phenomena [16mass and its velocity are the only dynamical variables).
22] have become the object of intensive study in recenflithough this is a valid approximation in many cases,
years (although rarely have these phenomena been studiedr work [4,5] has shown that, in general, the internal
simultaneously). dynamics plays a fundamental role.

In the present Letter we investigate a solitonic model Besides the applications of thg* equation in phase
perturbed by inhomogeneous forces [4,5], for whichtransition theory [26], it is anodel systerfor topological
the exact solution describing the stationary equilibriumsolitons in general. Let us consider as an example the
solitonic state can be obtained. Furthermore, the stabilitperturbed$* model,
problem for this solution can be solved exactly. The 1
effective potential for the soliton motion can be bistable by — b + ¥ — 3(d — $)=Fx), (2
depending on the system parameters. Using an addition@lhere
external periodic force we can have the soliton jumping 1 5
chaotically between the two potential wells (like in Fx) = Fi(x) = 3‘4(‘4 — Dtanh(Bx)
the Duffing oscillator) [23]. We prove that changes ,
of the soliton shape and the waveform of the external + lA(4BZ — A?) M
perturbations are very relevant to the soliton’'s dynamics 2 cosH (Bx)
as a whole. We generalize the concept of geometrical The inhomogeneities are chosen in order to have
resonance [22] to spatiotemporal systems. This concegome important properties. The exact stationary solution
can be used to design a nonfeedback mechanism of chagss the soliton equilibrated by the inhomogeneities in
control [13,14]. In our case, this mechanism can behe pointx = 0 can be obtaineds, = AtanHBx). The
applied in a localized way in space. Finally, we showstability problem of this solution can be solved exactly.
the existence of solitonic stochastic resonance (SSR). The force F;(x) possesses the interesting property to

We are interested in equations of the type be topologically equivalent (in the sense of catastrophe
b — b + R(b, br,x) — G() theory [27]) to a pitchfork bifurcation, allowing us to

have an effective potential (for the soliton) with one or

= F(x) + P(¢, d1)q(x,1), D two wells, depending on the system parameters. This

where G(¢) = _N;gb); U(¢) is a potential that pos- System is generic and structurally stable. Therefore

sesses at least two minima [24,2R(¢, ¢,, x) is a dis- the results obtained in this Letter can be generalized
sipative term, which in general can be nonlinear [9], anoquahtatwe[y to other systems topologically equalent to
the damping coefficient can depend.arF(x) is an inho- ~ that described by Eq. (2). The forcg(x) permits us
mogeneous force, anél(¢, ¢,)q(x, 1) is a general tempo- © observe important phenomena which occur with the
ral perturbation. Many systems are described by this typBarticipation of the internal soliton dy_namlcs including
of equations, including charge density waves, Josephsdfi€ appearance of a great number of internal modes and
junctions, and structural phase transitions [26]. the so_llton destruct|_on QUe to the instability of the shape

Problems related to Eq. (1) present extraordinary mathd?0de in some special situations [4,5]. _
matical difficulties. Even if we are to solve [for case 1h€ stability —analysis [4,5] which considers
P($, $:)q(x,1) = 0] the stability problem of a stationary Small - perturbations _ around the solitond . ) =
soliton placed on an equilibrium position created by the$+(¥) + f(x)e] leads to th% elgerlwalue 3A|c2)roblem
inhomogeneities [4,5], this task requires the making of bigl./ = I'f, where L = =97 + (34> = 5 = 557a0):
approximations [2]. The most common approximation isI" = —(A% + yA).
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The eigenvalues of the discrete spectrum are given by hoo cOgwot + 69)

the expressiol’, = —% + B%(A + 2An — n?), where $(x, 1) = Atant(Bx) + cosh'(Bx) - )
/_\(A + .1) = %ﬁ. The stabi_lity Cpnditipn of the eqqilib— wherew? = T,

rium pointx = 0 (for t_he soliton) is defined by_the €igen-  Thys, for small values ofig, the perturbation

value of the translational modef{(x) = cosh *(Bx)]: _

B*A — 5 > 0. A global topological analysis and the in- gor(x,1) = — @ohooy SiN(wot + 6o) ©6)
vestigation of the infinity [5] allow us to have complete cosh'(Bx)

qua!:fcst!ve inforrpatic;n otfhthe Sﬁ”toh dynatmti)(l:s. V\éhtﬁn thbesatisfies the GR condition. This explains a whole se-
equrlibrium position Tor the Soliton 1S unstabie and the ab-ag - of experiments performed in [5,9]. There th¢

. . o~ . ! Xink confined in a potential well created by the inhomo-
lational m(_)de IS suff|<_:|fntly high, the first shape mOOIegeneityF(x) was perturbed by the time-dependent force
[f1(x) = sinh(Bx) cosh *(Bx)], and even other intemal 5y " The aythors have got resonances of the translational
modes, can be unstable too, prqducmg f[he SF"”O'_” de§tru node practically without deformation of the kink profile.
“2” [5]. we ha\ge at least two Interesting situations: IfChaotic behavior is obtained only for high values of the
A" >1 and2AB” > 1, then there exists only one sta- perturbation amplitude, when (5) is not a GR solution any-

oy . . . _ 2
bledequ}I;?rluT point fof:fthﬁli()“tg.?x@o —0). IfA” =1 4 more. Meanwhile, if we use a different time-dependent
an < 1, a pitchiorklike biturcation occurs, and ¢..q [e.g.,q(x,t) = pocoswt] which does not satisfy

V¥§ havg ttWO s_taglg equilibrium {)ot;?tgo( It<' 0, X0 >t O)tt the GR condition, we will obtain irregular behavior in
(the pointxey = 0 becomes unstable). It is important to time and space with much smaller amplitudes.

stress that the b|furcat|on dqes not occur at the point we The GR [22] provides a mechanism for nonfeedback
would expect when considering the soliton as a structure

less point particle [in this case the number of equiIibriumcoggglpgl;ghvigshave the following equation:
positions depend on the number of zeros of faf¢e)]. . '
If the system, in the bistable case, is perturbed by _ b 43
an additional periodic force fitted to the shape of the $u = bu tyb— (b ¢ )
translational mode [4,9] [in Eq. (1) we pB{(¢, ¢,) = 1],
then we can have similar situations to those of the Duffing
oscillator [23]. But remember that in this case what is o » o
jumping between the potential wells is an extended objecWe assume 'ghat for certain initial conditions Eq. (7) is in
with a very complicated internal dynamics. On the other® chaotic regime providefi.(x,z) = 0. ,
hand, for sufficiently high values dfo| for the unstable ~ We are left with the problem of eliminating the chaotic
position, the soliton can bifurcate [5] in an antisoliton Motion using controF. (x, 7). Additionally, it is expected
(which would feel the middle position as a stable One)’that the control driving term is small and localized in
and two solitons, each of which would move towards oneSPace. In order to do this we should select the control
of the wells. term in such a way that the solution will be sufficiently
The recently formulated concept of geometrical resoClose to &’ periodic GR solution.
nance (GR) [22] can be very useful in this context. We can choose the control function in the form
Generalizing this concept for spatiotemporal systems we gccodw.t + 6,)
define ¢gr(x,7) as a GR solution of Eq. (1) if it satisfies Pl t) = o B (8)
the condition

R(¢pGr, 91 bR, X) = P(dcr,0:d6r)qGR (X, 1) . (3)
In this case there exists (local) conservation of energy,

codwt)

= Flx) = Po cosH(Bx)

+ Fo(x,1). (7)

Using the concept of “almost adiabatic invariant” [22,28],
we arrive at a condition for the control parameters

. 2
H=fm lszrL%z <f _7<m> _ p, ¥Por _codwn)
= 13\ 7% >\ Tox e ot at  cosh(Bx)
ddGr codw.t + 0.)
+ U(por) = F(x)por + C |dx. (4) a1 cosh (B dX>T, =0.09)
If we want to observe a GR situation, we should use & The fact that we have taken (8) associated with the
qar(x, 1) such that it satisfies the GR condition (3). translational mode (which approximately satisfies the GR
| Consider the Eq. (1) witlR = yé,, P =1, G(¢) =  condition) always allows us to find control parameters
3(¢ — ¢7), andF(x) as defined in (2). (with small g.) in order to suppress chaos. An Arnold-

We assume that the stability conditiditA — % >0 like tongue structure, similar to that observed in [22], can
for the equilibrium positiorx = 0 holds. In this case we be obtained here. In Fig. 1 we show the results of the
can write an approximate solution fgr(x,¢) (¢ = 0), application of the localized nonfeedback control.
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4.0 — - - " Using some topological analysis it is possible to guess the
Q) “shape” of the GR solution, and then through the concept
of almost adiabatic invariarﬁ<%)w ~ () one can
obtain the conditions such that the solution will be close
to a GR solution inside of a “mode-locked” tongue.

The system we have presented in this Letter with a
solitonlike extended object moving in an effective bistable
potential can also be useful for studying other phenomena,
e.g., the spatiotemporal stochastic resonance (SR) for the
. X . motion of an extended state with complicated internal
-1 0 1 2 dynamics.

dXc.m. / dt

Xe.m. Consider the equation
FIG. 1. Phase portraits for the motion of the soliton center | 3
of mass in Eq. (7);F(x) is defined as in Eq. (2)B(= 1/2). b — b + v — 5(dp — ¢°) = F(x) + qx,1),
(a) Chaotic motion in the absence of contrdl,.(x,r) = 0],
v=0.1,A=15,Py = 1,andw = 0.65. (b) Periodic motion (10)
as a result of the application of nonfeedback contiol, = where

0.065, g. = 0.35, and@, = 0

B(@4B? — 1)tanHB(x + x)] forx <0,

Fx)=40 forx =0,

Note that the validity of the concept of GR as a B(4B*> — 1)tanB(x — xo)] for x > 0;
mechanism for chaos control is not limited to the case (11)

in which the unperturbed equation can be solved exac|t|y.

(x.1) = {[Po codwt) + n(x,t)]cosh?[B(x + xo)] forx <O,
e [Pocodwt) + n(x,1)]cosh ?[B(x — x¢)] forx > 0;

here4B?> > 1. The forcesF(x) and ¢(x,t) are defined| The maximum synchronization is obtained with a signal
by Egs. (11) and (12) in such a way that there are twassociated with the translational mode. In this context,
equilibrium points for the soliton and the motion in eachFig. 3 shows that the deformation of the kink profile at
well is very close to the GR condition. In the absence ofthe SSR is minimal. These results allow us to predict

(12)

the white noisen(x, 1) [{(n(x,1)) = 0,{n(x,)n(x',¢')) =  the optimum entertainment of the noise by means of
2DS8(x — x")8(r — t)], the periodic force above is unable a periodic signal, not necessarily a simple sinusoidal
to make the soliton jump between the wells. signal but a more complex spatiotemporal function. The

When we switch on the noise, it is possible to observe atochastic resonance will depend on the characteristic
maximum in the graph of the signal-to-noise ratio (SNR)shape of the kink and the waveform of the perturbation
versusD (see Fig. 2). Here as the “signal” we take (in time and space). A manifestation of this fact is
the time Iszeries of the soliton center-of-mass coordinatethe following phenomenon: if instead of the translational

2 dy ) . \
Xem, = 7f77f idx . The SNR is measured following the tmhggewg: d%e;tgtrkc))%t;?vélé)s\év.e use the first shape mode,
traditional method [18]. Even whenF(x) has three zeros, if we are in the
presence of an extended object, the bistability is not a
sufficient condition for the stochastic resonance. The

BT A o extended object should “feel” the bistability, and the
nr @ 1 .| ‘ internal modes should be stable in the vicinity of all
674 [ 1 the equilibrium points, including the central equilibrium
72 1€, point which is unstable for the translational mode. On
%70 : 1% the other hand, if the eigenvall&,| corresponding to
68 - 1 > the unstable equilibrium position in the bistable potential
66 L ] is very high, then the first shape mode can be unstable
el v 1, N too and the soliton will bifurcate in two solitons and one
2% 3 ‘g’ 55 65 0 1000 2‘1?:163000 4000 antisoliton. This is what occurs when the parameters in

o _ Eq. (11) are such tha’(4B> — 1)tanH(Bx,) > 33. The
FIG. 2. Two aspects of the solitonic stochastic resonanC€canter of mass of this “three-particle structure” is always
(a) There is a maximum of the SNR at a critical value of illati & =0 d theref th . SSR
noise intensity. (b) Synchronization of the stochastic jumpseSciialing arouna = U, and therefore there IS no '

with the periodic perturbation linked with translational mode of — The spatiotemporal stochastic resonance has been con-

the soliton. @y = 0.04, = 0.01, xo = 2.5, andB = 0.7.) sidered in some recent papers [19,21]. In particular,
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