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Sequence Compositional Complexity of DNA through an Entropic Segmentation Method
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A new complexity measure, based on the entropic segmentation of DNA sequences into
compositionally homogeneous domains, is proposed. Sequence compositional complexity (SCC) deals
directly with the complex heterogeneity in nonstationary DNA sequences. The plot of SCC as a
function of significance level provides a profile of sequence structure at different length scales. SCC
is found to be higher in sequences with long-range correlation than those without, and higher in
noncoding sequences than coding sequences. Furthermore, a general agreement is found between the
SCC of the DNA sequence, on one hand, and the biological complexity of the organism, on the other,
attributable to an increasingly complex organization of noncoding DNA over the course of evolution.
[S0031-9007(97)05210-1]
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The analysis of sequence correlation structure, in botlity is about [7]. Neither the algorithmic complexity [8]
the spatial and the frequency domains, resulted in thémaximum for randomness) nor other derived measures
finding of short-range [1] and long-range [2] correlations[9] nor those based on mutual information (statistical de-
in nucleotide sequences, thus uncovering a complegendence) [10] are completely satisfactory. Instead, the
fractal structure for DNA. number of domains and their compositional heterogeneity

Sequence structure can be adequately revealed throughould be internally accounted for—i.e., without any ref-
segmentation algorithms. One of these, conceptuallgrence to environments or ensembles.
simple and computationally efficient, was proposed last Compositional domains-These are defined as subse-
year by our group [3]. With such a method, a DNA quences with a different base composition in comparison
sequence can be decomposed into homogeneous subte-the two adjacent subsequences, at a given level of
guences (patches or domains). By varying an appropriatgtatistical confidence. The domains so defined are
threshold, we obtain different partitions of the sequencareighborhood dependent. Some measure of the difference
at different statistical significance levels. When seg-between compositions is needed to compare adjacent sub-
menting sequences with simple domain structures, hosequences and decide whether they are different domains.
mogeneous domains can be consistently found (if purelyor this task, we use the Jensen-Shannon divergence mea-
random fluctuations are excluded). However, when theure [11]. For two subsequencgsandsS, of lengths/,
method is applied to more complex, long-range correlatednd /,, JS(S;, S») = H[S] — (IL—l H[S ] + IL—ZH[SZ]) =0,
sequences, such homogeneity vanishes: by relaxing thehere L = 1, + [, S = S, & S, (concatenation) and
threshold value, we find new domains within other do-H[-] = — > plog, p is the Shannon’s entropy of the prob-
mains, previously taken as homogeneous under a higheiility distribution{ p} obtained from base frequencies in
threshold value. This domains-within-domains phenomethe corresponding subsequence. Given that most relevant
non points to complex compositional heterogeneity indifferences in correlation structure have been found with
DNA sequences, which is consistent with the hierarchithe {R(A or G), Y(C or T)} mapping rule, we used this
cal nature of biological complexity [4]. binary alphabet throughout this study, except where indi-

One implication of this complex heterogeneity is thatcated. Similar results can be obtained with the quaternary
conventional methods to estimate the complexity of DNAalphabet{A, T, C, G}, while the {S(C or G), W(A or T)}
sequences (i.e., Shannon-Gatlin measures or DNA spemapping rule allows for less marked differences between
tra), while adequate mostly for stationary stochastic prothe DNA sequences analyzed here.
cesses, in this case can be problematic [5], since they Statistical confidence is established by calculating the
are able to distinguish sequences of different complexiprobability that the given divergence value (or lower) ap-
ties only on an indirect basis. Consequently, a measurpears in a random sequence (with the same length and base
directly dealing with complex heterogeneity is neededcomposition), once it has been randomly split. For short
Such a measure would be useful in modeling DNA sesubsequences, the probability is exactly computed from the
guences [6], as well as in molecular evolutionary studiesiypergeometric distribution; for large ones, an approxima-
or comparative genomics. A good definition of complex-tion has been derived in the appendix of Ref. [3].
ity must be objective and mathematically tractable, yet Given a significance leved, a sequence can be parti-
consistent with the intuitive notion of what the complex- tioned in many different ways. To define and select the
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best partition, the following optimization criterion is es- since all previous cuts in a complete partition remain
tablished based on the partition divergencg(dB which  significant for any’ < s, thereforex’ = n. This behavior

is an extension of J30 then domains obtained: holds for the heuristic segmentation, as can easily be seen
LR by deriving an alternative expression for,J§ given in
JSi(s) = H[S] — Z I HLS; ] terms of the splitting process. This progressive expression,
n i= which can be proven by induction and by using the
= Z %(H[S] — HI[S;]). 1) branching property of the entropy function, is
i=1 n—1
This equation is applicable to any partition of a set of IS(s) = > l_kJSZ(SkpSkz)» (2)
objects, but it makes sense in this context only if applied -1 L

to a sequence segmented in domains. We call a partitiowhere the sum extends over all the splits produced along
complete (optimum) with divergence }1), if there is no  the heuristic segmentation ahds the length of the subse-
other with higher divergence, at the sameln particular, quence to be split (not the length of tkelomain) intoSy,
it follows that for a complete partition, no domain can beandSy,; note thatd. [, # L. Although in Eq. (2) J$(s)
further divided into two new domains; otherwise,, seems to be dependent explicitly on the path followed by
would increase, in which case the preceding partitiorthe splitting algorithm, Eq. (1) clearly shows that, S is
would not be complete. path invariant—i.e., it depends only on the final partition.
A heuristic segmentation methedHere, we describe JS, as a function ofs is more informative than a single
how to segment a sequence. ComputinffdSequiresus JS, value. The representation of a good sample of points
to have the sequence completely segmented. This implienstitutes the J$s) profile. The profiles shown here are
that all possible partitions of the sequence must be checkedlways below and close to those corresponding to the theo-
and thus aNP-complete problem must be solved. retical, complete segmentation.
To circumvent the extreme complexity of this prob- Any profile is limited to the rectangle% = s = 100%,
lem, we shall design an appropriate heuristic proceduré = JS,(s) = H[S]. The profile of a sequence depends
that would render a good approximation to complete segen the splitting rate as decreases. Two basic patterns
mentation. Our published method [3] performs the taskare (1) a step function (a burst of domains is produced at a
by iteratively splitting the sequencé,— S; ® S, with  critical s; e.g., in a periodically biased sequence), and (2) a
max {JS(S1, S2)}, once the new cut satisfies the signifi- plateau function (no splits are made within a givenin-
cance condition, while maintaining the location of pre-terval; e.g., in a compositionally homogeneous sequence).
ceding cuts. The procedure ends when no further legahny profile can be described as a certain combination of
splits can be made. We now slightly improve the abovesteps and plateaus, either exact or approximate. On this ba-
procedure, in which every new intended split can lead tais, an interpretation concerning sequence complexity ver-
the loss of significance at previous adjacent cuts. Nowsuss can then be derived: a constant rate of variation for
we verify that the statistical significance of these cuts is]S,(s) seems to reveal a self-similar-like structure.
preserved before accepting the new split. This refinement Profiles for pure random sequences begin to depart ap-
ensures that all the cuts remain significant throughout thpreciably from zero for love values(<80%), meaning that
process and in the final partition. The,J8 value thus the profiles are being contaminated by spurious complex-
obtained is a lower bound of JS). ity, due to statistical fluctuations. Therefore, we choose the
A measure of sequence compositional complexityange80% < s < 100% for all sequence comparisons.
(SCC)—The JS(s) measure fits the requirements for Sequence analysis:We first analyzed the profiles of
representing the compositional complexity of the seseveral artificially generated sequences [Fig. 1(a)] with
quence. In fact, the last expression in Eq. (1) is thedifferent degrees of priori complexity. As expected,
weighted sum of histogram entropy deviations of theJS,(s) increased with the intended complexity built into
domains from the average, thus being a measure dhe sequence. There were clear differences between the
both the number and compositional biases of domaingrofiles—a marked improvement on previous methods,
Moreover, this information-theoretic divergence has thewhich were unable to distinguish between many of these
following three major properties: (1) It is defined within sequences [12].
the same framework that the criteria for both segmenting Second, we apply the complexity measure to real DNA
the sequence and optimizing the partition, and theresequences with different correlation structure. Figure 1(b)
fore the SCC is the maximum reachable divergence—i.eshows that the values obtained 8SUMTCRADCYV a hu-
that corresponding to the optimum partition. (2) It is man DNA sequence whose long-range correlations [12]
not dependent on the total length of the sequence and complex heterogeneity [3] are both well known, are
being analyzed. (3) It may be used for nonstationaryhigher than those for the uncorrelated bacterial sequence
sequences—a major advantage over many other statistieg€ O 110K, regardless of thes value considered. The
that are currently, even controversially [5], used. corresponding two shuffled sequences exhibit the lowest
We now explore the dependency of,d§ ons. Forall profiles. The profiles of two larger sequences (the hu-
sequences, J%) increases monotonically &decreases, man sequencé/STCRB18 and the complete genome of
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Most of the segments from a sequence with long-range
base-base correlation obtained at a gigeralue showed
complexity profiles similar to the entire sequence when
segmented at decreasisgFig. 1(c)]. The only excep-
tions were some uncorrelated segments, such as those con-
taining simple repetitive DNA sequences, which showed
lower complexity profiles [Fig. 1(c)].

Fourth, we focused on correlation-structure differences
between coding and noncoding sequences [2,13]. Com-
plexity profiles enabled a clear distinction between these
two types of DNA: Noncoding regions consistently
showed a higher SCC than did the coding ones, ir-
respective of the proportion of noncoding segments in
the sequence (Fig. 2). This was true for both eukary-
otic introns [Fig. 2(a)] and prokaryotic intergenic regions
[Fig. 2(b)]. This greater SCC for noncoding segments
agrees with the observations that intron sequences show
long-range correlations as robust as those of entire genes

HsTCRBI18 [14]. Complexity differences between coding and non-
010 ECOMOR e N . coding regions are also apparent when the quaternary
e T {A,T, C,G} alphabet is used (Fig. 3). Several explana-
000} et mse s s tions can be given for the observed higher SCC of non-
osol__, Shuffled sequences , , coding DNA: (1) Given the evolutionary conservatism of
c some intergenic sequences [15], noncoding (“junk”) DNA
© —— HUMHBB (1 ; on i
! (1) could perform some important function in the cell, the
e T ';::[l:;ﬁ':;"(ts()z) exact nature of which is as yet undetermined; (2) some
0zl : . .
N, | Other segments type of hidden language could be present in noncoding
010} (@ HUMTCRADCY
e 020} Entire sequence
~~~~~~~~~~~~~~~ ----=-- Non-coding (97%)
‘I“ \ JSn ...........
000 Mmool T =
80 % % % 00
s (%) T
FIG. 1. (a) Complexity profiles of computer-generated se- | e

guences with increasing degrees of built-in complexity: (1) A
pseudochromosome simulating mutual-information properties
of yeast chromosomes but without taking into account com- 0.00
positional heterogeneity [13]; (2) a first-order Markov chain

with the same transition probabilites adUMTCRADCYVY 0.06 |-

(3) a generalized Lévy-walk sequence with the parameters de-

scribed in Ref. [18]; (4) a sequence produced by the insertion- JSn r

deletion model [14]; (5) a sequence obtained by means of

the expansion-modification system [19]. (b) Complexity pro- 0.04
files of HUMTCRADCV[97 634 base pairs (bp)ECO110K
(111401 bp), and their corresponding shuffled sequences. For
comparison, two larger sequences are included: the longest
human sequencélSTCRBS8 (684973 bp) and the complete
genome of E. coli (4638858 bp); the{A,T,C,G} alphabet
was used in elaborating this plot. (c) Complexity profiles of
HUMHBB (73326 bp) and some of the longer fragments re- 0.00
sulting from segmenting its = 99%). Line-1 and Kpnl are

two families of repetitive DNA.

0.02

E. coli) confirms that long-range fractal correlations are

. ECO110K

Entire sequence
- Non-coding (26%)

s (%)

associated with higher levels of SCC [Fig. 1(b)].

Third, we performed a quantification of the “domains-(p) ECO110k (111401 bp). The percentages of noncoding
within-domains” phenomenon (see Fig. 3 of Ref. [3]). DNA at each sequence are given in parentheses.
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030 to increasing percentages of introns in the corresponding
E, coli (complete genome) sequences (compare the profiles and the percentages of in-
Entire sequence trons for human, rat, and chicken in Fig. 4); therefore, an
020l ------- Non-coding (12.5%) increasingly complex organization of noncoding regions
N Coding over evolution may also play a role in this process.
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