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Sequence Compositional Complexity of DNA through an Entropic Segmentation Method
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A new complexity measure, based on the entropic segmentation of DNA sequences into
compositionally homogeneous domains, is proposed. Sequence compositional complexity (SCC) deals
directly with the complex heterogeneity in nonstationary DNA sequences. The plot of SCC as a
function of significance level provides a profile of sequence structure at different length scales. SCC
is found to be higher in sequences with long-range correlation than those without, and higher in
noncoding sequences than coding sequences. Furthermore, a general agreement is found between the
SCC of the DNA sequence, on one hand, and the biological complexity of the organism, on the other,
attributable to an increasingly complex organization of noncoding DNA over the course of evolution.
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The analysis of sequence correlation structure, in bo
the spatial and the frequency domains, resulted in t
finding of short-range [1] and long-range [2] correlation
in nucleotide sequences, thus uncovering a comp
fractal structure for DNA.

Sequence structure can be adequately revealed thro
segmentation algorithms. One of these, conceptua
simple and computationally efficient, was proposed la
year by our group [3]. With such a method, a DNA
sequence can be decomposed into homogeneous su
quences (patches or domains). By varying an appropri
threshold, we obtain different partitions of the sequen
at different statistical significance levels. When se
menting sequences with simple domain structures, h
mogeneous domains can be consistently found (if pure
random fluctuations are excluded). However, when t
method is applied to more complex, long-range correlat
sequences, such homogeneity vanishes: by relaxing
threshold value, we find new domains within other do
mains, previously taken as homogeneous under a hig
threshold value. This domains-within-domains phenom
non points to complex compositional heterogeneity
DNA sequences, which is consistent with the hierarch
cal nature of biological complexity [4].

One implication of this complex heterogeneity is tha
conventional methods to estimate the complexity of DN
sequences (i.e., Shannon-Gatlin measures or DNA sp
tra), while adequate mostly for stationary stochastic pr
cesses, in this case can be problematic [5], since th
are able to distinguish sequences of different comple
ties only on an indirect basis. Consequently, a meas
directly dealing with complex heterogeneity is neede
Such a measure would be useful in modeling DNA s
quences [6], as well as in molecular evolutionary studi
or comparative genomics. A good definition of complex
ity must be objective and mathematically tractable, y
consistent with the intuitive notion of what the complex
44 0031-9007y98y80(6)y1344(4)$15.00
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ity is about [7]. Neither the algorithmic complexity [8]
(maximum for randomness) nor other derived measur
[9] nor those based on mutual information (statistical de
pendence) [10] are completely satisfactory. Instead, t
number of domains and their compositional heterogene
should be internally accounted for—i.e., without any ref
erence to environments or ensembles.

Compositional domains.—These are defined as subse
quences with a different base composition in compariso
to the two adjacent subsequences, at a given level
statistical confidence. The domains so defined a
neighborhood dependent. Some measure of the differen
between compositions is needed to compare adjacent s
sequences and decide whether they are different doma
For this task, we use the Jensen-Shannon divergence m
sure [11]. For two subsequencesS1 andS2 of lengthsl1

and l2, JS2sS1, S2d  HfSg 2 s l1

L HfS1g 1
l2

L HfS2gd $ 0,
where L  l1 1 l2, S  S1 © S2 (concatenation) and
Hf?g  2

P
plog2p is the Shannon’s entropy of the prob-

ability distributionh pj obtained from base frequencies in
the corresponding subsequence. Given that most relev
differences in correlation structure have been found wi
the hRsA or Gd, Y sC or Tdj mapping rule, we used this
binary alphabet throughout this study, except where ind
cated. Similar results can be obtained with the quaterna
alphabethA, T , C, Gj, while the hSsC or Gd, WsA or T dj
mapping rule allows for less marked differences betwee
the DNA sequences analyzed here.

Statistical confidence is established by calculating th
probability that the given divergence value (or lower) ap
pears in a random sequence (with the same length and b
composition), once it has been randomly split. For sho
subsequences, the probability is exactly computed from t
hypergeometric distribution; for large ones, an approxim
tion has been derived in the appendix of Ref. [3].

Given a significance levels, a sequence can be parti-
tioned in many different ways. To define and select th
© 1998 The American Physical Society
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best partition, the following optimization criterion is es
tablished based on the partition divergence JSnssd, which
is an extension of JS2 to then domains obtained:

JSnssd  HfSg 2

nX
i1

li

L
HfSig


nX

i1

li

L
sHfSg 2 HfSigd . (1)

This equation is applicable to any partition of a set o
objects, but it makes sense in this context only if applie
to a sequence segmented in domains. We call a partit
complete (optimum) with divergence JSp

nssd, if there is no
other with higher divergence, at the sames. In particular,
it follows that for a complete partition, no domain can b
further divided into two new domains; otherwise, JSp

nssd
would increase, in which case the preceding partitio
would not be complete.

A heuristic segmentation method.—Here, we describe
how to segment a sequence. Computing JSp

nssd requires us
to have the sequence completely segmented. This imp
that all possible partitions of the sequence must be check
and thus anNP-complete problem must be solved.

To circumvent the extreme complexity of this prob
lem, we shall design an appropriate heuristic procedu
that would render a good approximation to complete se
mentation. Our published method [3] performs the tas
by iteratively splitting the sequence,S ! S1 © S2 with
max hJS2sS1, S2dj, once the new cut satisfies the signifi
cance condition, while maintaining the location of pre
ceding cuts. The procedure ends when no further leg
splits can be made. We now slightly improve the abov
procedure, in which every new intended split can lead
the loss of significance at previous adjacent cuts. No
we verify that the statistical significance of these cuts
preserved before accepting the new split. This refineme
ensures that all the cuts remain significant throughout t
process and in the final partition. The JSnssd value thus
obtained is a lower bound of JSp

nssd.
A measure of sequence compositional complex

(SCC).—The JSnssd measure fits the requirements fo
representing the compositional complexity of the se
quence. In fact, the last expression in Eq. (1) is th
weighted sum of histogram entropy deviations of th
domains from the average, thus being a measure
both the number and compositional biases of domain
Moreover, this information-theoretic divergence has th
following three major properties: (1) It is defined within
the same framework that the criteria for both segmentin
the sequence and optimizing the partition, and ther
fore the SCC is the maximum reachable divergence—i.
that corresponding to the optimum partition. (2) It i
not dependent on the total lengthL of the sequence
being analyzed. (3) It may be used for nonstationa
sequences—a major advantage over many other statis
that are currently, even controversially [5], used.

We now explore the dependency of JSnssd on s. For all
sequences, JSp

nssd increases monotonically ass decreases,
-
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since all previous cuts in a complete partition remain
significant for anys0 , s, thereforen0 $ n. This behavior
holds for the heuristic segmentation, as can easily be se
by deriving an alternative expression for JSnssd given in
terms of the splitting process. This progressive expressio
which can be proven by induction and by using the
branching property of the entropy function, is

JSnssd 
n21X
k1

lk

L
JS2sSk1 , Sk2 d , (2)

where the sum extends over all the splits produced alon
the heuristic segmentation andlk is the length of the subse-
quence to be split (not the length of thek domain) intoSk1

andSk2 ; note that
P

lk fi L. Although in Eq. (2) JSnssd
seems to be dependent explicitly on the path followed b
the splitting algorithm, Eq. (1) clearly shows that JSnssd is
path invariant—i.e., it depends only on the final partition
JSn as a function ofs is more informative than a single
JSn value. The representation of a good sample of point
constitutes the JSnssd profile. The profiles shown here are
always below and close to those corresponding to the the
retical, complete segmentation.

Any profile is limited to the rectangle0% # s # 100%,
0 # JSnssd # HfSg. The profile of a sequence depends
on the splitting rate ass decreases. Two basic patterns
are (1) a step function (a burst of domains is produced at
critical s; e.g., in a periodically biased sequence), and (2)
plateau function (no splits are made within a givenDs in-
terval; e.g., in a compositionally homogeneous sequence
Any profile can be described as a certain combination o
steps and plateaus, either exact or approximate. On this b
sis, an interpretation concerning sequence complexity ve
suss can then be derived: a constant rate of variation fo
JSnssd seems to reveal a self-similar-like structure.

Profiles for pure random sequences begin to depart a
preciably from zero for lowsvaluess,80%d, meaning that
the profiles are being contaminated by spurious comple
ity, due to statistical fluctuations. Therefore, we choose th
range80% , s , 100% for all sequence comparisons.

Sequence analysis.—We first analyzed the profiles of
several artificially generated sequences [Fig. 1(a)] wit
different degrees ofa priori complexity. As expected,
JSnssd increased with the intended complexity built into
the sequence. There were clear differences between t
profiles—a marked improvement on previous methods
which were unable to distinguish between many of thes
sequences [12].

Second, we apply the complexity measure to real DNA
sequences with different correlation structure. Figure 1(b
shows that the values obtained forHUMTCRADCV, a hu-
man DNA sequence whose long-range correlations [12
and complex heterogeneity [3] are both well known, are
higher than those for the uncorrelated bacterial sequen
ECO110K, regardless of thes value considered. The
corresponding two shuffled sequences exhibit the lowe
profiles. The profiles of two larger sequences (the hu
man sequenceHSTCRB18 and the complete genome of
1345
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FIG. 1. (a) Complexity profiles of computer-generated s
quences with increasing degrees of built-in complexity: (1)
pseudochromosome simulating mutual-information properti
of yeast chromosomes but without taking into account com
positional heterogeneity [13]; (2) a first-order Markov chai
with the same transition probabilities asHUMTCRADCV;
(3) a generalized Lévy-walk sequence with the parameters
scribed in Ref. [18]; (4) a sequence produced by the insertio
deletion model [14]; (5) a sequence obtained by means
the expansion-modification system [19]. (b) Complexity pro
files of HUMTCRADCV[97 634 base pairs (bp)],ECO110K
(111401 bp), and their corresponding shuffled sequences.
comparison, two larger sequences are included: the long
human sequenceHSTCRB18 (684 973 bp) and the complete
genome of E. coli (4 638 858 bp); thehA, T , C, Gj alphabet
was used in elaborating this plot. (c) Complexity profiles o
HUMHBB (73 326 bp) and some of the longer fragments r
sulting from segmenting itss  99%d. Line-1 and KpnI are
two families of repetitive DNA.

E. coli) confirms that long-range fractal correlations ar
associated with higher levels of SCC [Fig. 1(b)].

Third, we performed a quantification of the “domains
within-domains” phenomenon (see Fig. 3 of Ref. [3]
1346
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Most of the segments from a sequence with long-rang
base-base correlation obtained at a givens value showed
complexity profiles similar to the entire sequence whe
segmented at decreasings [Fig. 1(c)]. The only excep-
tions were some uncorrelated segments, such as those c
taining simple repetitive DNA sequences, which showe
lower complexity profiles [Fig. 1(c)].

Fourth, we focused on correlation-structure difference
between coding and noncoding sequences [2,13]. Com
plexity profiles enabled a clear distinction between thes
two types of DNA: Noncoding regions consistently
showed a higher SCC than did the coding ones, ir
respective of the proportion of noncoding segments i
the sequence (Fig. 2). This was true for both eukary
otic introns [Fig. 2(a)] and prokaryotic intergenic regions
[Fig. 2(b)]. This greater SCC for noncoding segments
agrees with the observations that intron sequences sho
long-range correlations as robust as those of entire gen
[14]. Complexity differences between coding and non
coding regions are also apparent when the quaterna
hA, T , C, Gj alphabet is used (Fig. 3). Several explana
tions can be given for the observed higher SCC of non
coding DNA: (1) Given the evolutionary conservatism of
some intergenic sequences [15], noncoding (“junk”) DNA
could perform some important function in the cell, the
exact nature of which is as yet undetermined; (2) som
type of hidden language could be present in noncodin

FIG. 2. Differences in SCC between coding and noncodin
regions of the sequences (a)HUMTCRADCV(97 634 bp) and
(b) ECO110K (111 401 bp). The percentages of noncoding
DNA at each sequence are given in parentheses.
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FIG. 3. Differences in SCC between coding and noncodin
regions of theE. coli complete genome (4 638 858 bp). The
quaternaryhA, T , C, Gj alphabet was used.

sequences, although previous evidence for this [16] h
been disputed [17]; (3) a simpler alternative explanatio
would be that noncoding regions have a higher evolution
ary tolerance to mutations as duplications and insertion
thus developing a less random, more redundant structu
[6]. Nevertheless, the mere presence of DNA repeats do
not lead to higher values for SCC [Fig. 1(c)].

Finally, we address the comparison of SCC over evo
lution. It has been shown that the scaling exponents
the random-walk representation of homologous DNA se
quences increases with evolution [14]. We determine
the SCC of the four gene families analyzed by Buldyre
et al. Myosin profiles generally agreed with biological
complexity (Fig. 4), and the same was true for lysozym
genes (not shown). However, some exceptions to th
rule, mostly in short sequences, were found for actin
and cytochromeC (not shown). The observed increase
in SCC with evolution cannot be exclusively attributed

FIG. 4. Complexity profiles of myosyn heavy-chain gene
in different species (total length, percentage of introns
snd Human (28 438 bp, 74%),s,d rat (25 759 bp, 77%),
ssd chicken (31 111 bp, 74%),s}d Caenorhabditis(10 780 bp,
14%), sØd Brugia (11 766 bp, 32%),s1d yeast (6108 bp,
0%), s3d Acanthamoeba(5894 bp, 10%), andspd Drosophila
(22 663 bp, 66%).
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to increasing percentages of introns in the correspondin
sequences (compare the profiles and the percentages of
trons for human, rat, and chicken in Fig. 4); therefore, a
increasingly complex organization of noncoding region
over evolution may also play a role in this process.
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