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Causality and Symmetry in Time-Dependent Density-Functional Theory
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We resolve an existing paradox regarding the causality and symmetry properties of response functions
within time-dependent density-functional theory. We do this by defining a new action functional within
the Keldysh formalism. By functional differentiation the new functional leads to response functions
which are symmetric in the Keldysh time contour parameter, but which become causal when a transition
to physical time is made. The new functional is further used to derive the equations of the time-
dependent optimized potential method. [S0031-9007(97)05233-2]
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Time-dependent density-functional theory (TDDFT)ments. The symmetry and causality requirements clearly
[1-7] provides a rigorous and useful method for calculatcontradict each other. This problem is not specific to the
ing properties of many-particle systems in time-dependerdiction functional given by Eq. (1) but applies to all twice
external fields. TDDFT has been applied to a wide varidifferentiable action functionals defined in physical time.
ety of physical problems both within the linear responserhe main purpose of this Letter is to show how this para-
regime and beyond [4]. The rigorous foundations ofdox can be resolved by use of the Keldysh formalism.
TDDFT were first laid down by Runge and Gross [8] who A further problem with the action functional in Eq. (1)
proved a 1-1 correspondence between the time-dependdstrelated to the treatment of its boundary conditions. In
external fieldv(r¢) and the time-dependent densitirz),  order to derive the time-dependent Schrédinger equation
for many-body systems evolving from a fixed initial (TDSE) from the action functional, one has to enforce
state. Within TDDFT, one further introduces an auxiliarythe boundary condition$¥ (7)) = 6V (¢;) = 0 on the
noninteracting system, known as the Kohn-Sham systenvariations of the wave function. Within TDDFT the
with the same density(r¢) as the fully interacting system. action functional A is only defined on the set ob-
The Runge-Gross theorem applied to a noninteractingepresentable wave functions, i.e., wave functions which
system then says that the external potentialof the satisfy a TDSE. On this set variatiodsV are always
Kohn-Sham system is uniquely determined by the densitycaused by potential variationsv. Therefore, since the
If we subtract fromw, both the Hartree potential and the TDSE is first order in time, the variatio® V() at
external potential of the interacting system we obtain théimes ¢ > 1, is completely determined by the boundary
exchange-correlation potential, which incorporates all condition §¥(zy) = 0. We are thus no longer free to
the exchange and correlation effects. This quantity caspecify a second boundary condition at a later time
therefore, by the above construction, be defined without;. This leads to a nonvanishing boundary term when
invoking a variational or action principle. However, making the variatiorSA. The problem is usually treated
having an action principle is desirable as it provides arby using a convergence factor €xp) in the definition
elegant derivation of the Kohn-Sham one-electron equasf the action functional and moving one boundary to
tions and a systematic way of deriving approximations to—~. This procedure, however, introduces a difficult
v... The original work by Runge and Gross [8] already problem associated with the interchange of the functional
provided a derivation of the Kohn-Sham equations fromdifferentiation ande — 0 limits.
an action principle using the action In this Letter, we will introduce an action functional

f without the above-mentioned problems. First of all, our
Aln] = f dr(¥[n]lio, — H(t)|¥[n]). (1) new functional does not explicitly contain the time-
fo derivative operatord,, and thus no boundary terms
It was later discovered [3,4] that this definition of the actionappear when performing variations. Second, we use
leads to a paradox when calculating response functionshe time contour method due to Keldysh [9] in which
On the one hand, response functions like(rz,r’'t’) =  the physical timet is parametrized by an underlying
v, (rt)/dn(r't’) must be causal, i.e., be zero o< /.  parameterr, called pseudotime. This procedure was
On the other handy,. should be obtained as the func- originally introduced by Keldysh in order to obtain an
tional derivativev,.(rt) = 8A,./dn(rt) of the exchange- elegant treatment of nonequilibrium systems in terms of
correlation partd,. of the action functional. Interchang- many-body Green functions [9-13]. We will use the
ing the order of differentiation then yield&.(rz,r't’) =  same procedure in the definition of our action functional.
82A,./8n(rt)én(x't’) = f..(x't',rt). Hence, we findthat Higher functional derivatives of the new action functional
fxe must be a symmetric function of its space-time argu-will lead to response functions which are symmetric in the
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Keldysh time contour parameter. Transforming back taderivative ofA at a physical potentiak(rr) = v(r¢(7))
physical timet then yields the desired causal, i.e., retardedve obtain
response functions in terms bf SA

The Keldysh contour is defined by parametrizing the
physical timez(7) in terms of a pseudotime in such a Su(rt) lu=virn)
way that if 7 runs fromr; to 7, thent runs fromz, to (7
7 and from7 back toz. The value off can be chosen where the evolution operatdfis now defined in physical
arbitrarily as long as physical quantities are calculated afime. Therefore, the derivative ol at the physical
earlier times. In practice one often takes= +% [9].  potential v is the density of the system in the external
The actual form of the parametrization is irrelevant sincefield v. We now want to use(rr) as our basic variable,

and the final results are independent of it. The initial stateind we perform a Legendre transform and define
of the system at time, is given by the wave functioty,.

= (WolV (10, Nt (r)V(t, 10)|Wo) = n(rr),

The evolution of this state in pseudotime is governed by Aln] = —Afu] + j dt d®r n(rr)u(rr) (8)
the Schrodinger equation c
[if(r) "0, — H(r)]|¥(r)) = 0 @) so that 8A/6n(r7) = u(r7). For convenience we in-

R troduced the short notatioff . dt for [dr'(r). The
wheret(r) = dt/d7. The Hamiltoniant/(7) is given by | egendre transformation assumes that there is a one-to-
H(r) =T + U(r) + W whereT represents the kinetic one relation between(rr) andn(r7) such that Eq. (5) is
energy operatori/ represents the external field explicitly jnyertible. This can, however, be proven by an extension

given by U(r) = [d*r a(r)u(rr), and W represents the of the Runge-Gross theorem to the case of a pseudotime
two-particle interaction. We first define a functional of parametrization [14].

the external fieldi by We now define an action functional for a noninteracting
Alu] = i In(Wo|V(rs, )W), (3) system with the Hamiltonian

whereV is the r or contour ordered evolution operator of Hy(r) =T + Uy(7) 9)

the system

and the action
V(Tf,T,') = TC eX[{—l"/’}de II(T)ﬂ(T)i|, (4) As[us] = i|n<q)()|VS(Tf,Ti)|(I)()>. (10)

whereT¢ denotes ordering i [12]. It is this redefini-  The evolution operatov (¢, 7;) is defined similarly as in
tion of the time-ordering operator in addition to the in- Ed. (4) with# replaced byt;. The initial wave function
troduction of the time contour which makes the Keldysh®o atz = o is a Slater determinant. We can now do a
approach applicable in nonequilibrium Green functionsimilar Legendre transform and define

theory [12]. It is clear that if the external potential is _

equal on the forward and backward parts of the contour, As[n] = —Aj[u] + [ dt drn(rr)ug(rr).  (11)
i.e., of the formu(r7) = v(rs(7)), then this evolution op- ¢

erator will become unity andi will become zero. Po- The exchange-correlation patt. of the action functional
tentials of this type will be denoted as physical poten-s then defined by

tials. Functional derivatives, however, can be nonzero for

physical potentials. The functional derivative &fwith Aln] = As[n] = Axln]
respect tau yields

SA  (WolV(rs, )i(r)V (7, 7;)|Wo)

Su(rr) (WolV (s, m)|Wo) The above equation implicitly assumes that the func-
— (A (r7)) = n(rr), (5) tionals A and_ A, are dgﬂned on the same domam, i.e.,
i ) i that there exists a noninteracting system described by the
where we defined the Heisenberg representation of apgmiitonian A, with the same density as the interacting
operatorQ as usual byOy(r) = V(7;,7)OV(7,7;) and  gystem described by the Hamiltoniéh A necessary re-

1
- = ] dtd3r1 d3rzw (12)
2 Jc Ir; — 2

the expectation value by quirement in order for this to be true is that the initial
R (WolTc[V(7s, 7)) O ()] 1Wo) statesV, and ®, must yield the same density. For most
(On(1)) = (WolV (7, 70)[Wo) - (6)  applications¥, will be the ground state of the system be-

ore the time-dependent field is switched on abg will

. f
Note that we have used the usual convention of Keld_ys%e the corresponding Kohn-Sham determinant of station-
Green function theory [12] where the functional derlVat'veary density-functional theory. Functional differentiation

is defined bySA = [d3rdrt/(r)[8A/Su(rr)]8u(rr); : .
i.e., the terms'(7) belongs to the integration measure of Eq. (12) with respect ta(r7) yields
rather than the functional derivative. If we now take the u(rr) = us(r7) — ue(rr) — ug(rr), (13)
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where uy(rr) = [d*r' n(x'7)/Ir — r'| is the Hartree the time-dependent Kohn-Sham system. If we take the
potential andu,.(r7) = 6A,./8n(r7) is the exchange- above derivatives at the physical time-dependent density
correlation potential. By the above construction then(rr) corresponding to the potential(r7) = v(rz(7))
potentialu, of the noninteracting system yields the sameof the interacting system, we can transform to physical
density as the potential in the fully interacting system. time and the Kohn-Sham system is then given by the
The noninteracting system is thus to be identified withequations

6Axc

[—3 V2 + v(re) + vg(re) + v, (60)]epi(re) = id,i(re), Ve (rt) = Sn(eT) lomnen’

(14)

where the density(r¢) can be calculated from the sum Af Taking the second functional derivative of Eq. (12) now
the square of the orbitals. We now address the problemnields
of causality versus symmetry associated with the response

functions. The second derivative of the functionl x '=x"- L_8n - m) _ fe s 17)
s / _
yields (1) Irp — ra
( )= 82A where y, ! is the inverse of the Kohn-Sham
XL IRT2) = s ey 1) S u(y 7)) density response function andf..(r;7i,ra7) =

. . R 8V, (r171)/8n(rym). Since both y™!' and y, ! are

= ~ilTcAnpmm)Aip(m)).  (15)  gymmetric alsof,, must be symmetric. However, these
where the density fluctuation operatohsigy(rr) =  functions will become causal in physical time. In order to
an(rr) — (Ag(r7)) enters rather than the density opera-see how they act in physical time we calculate the density
tor, due to the derivatives of the denominator in Eq. (5)responseSn(rt) due to a variatiorSv(rz). The function
This density response function is symmetric as it shouldy evaluated at a physical densiifr?) is given by
and from the Legendre transform it follows that its . . N
inverse is given by ix(rim,12m2) = 0(11 — 12) (Anp(r111)Adig (rat2))

524 + (1 e2). (18)

. 16
dn(rim1)én(ry7) (16) | Hence, we have

x T, mm) =

on(rity) = [C dty d*ry x(r171,1272)8v(1r212)

'T[ T}/
— [ dr P () sy (0111 (0212)) S0 (xts) — i f dra 1) draiigy (et (01 1)) 0 (k2t2)

+oo
= f dty dry xr(rity, 1212)8v(r21), (19)
to
where ! i.e., higher order derivatives of the action functional are
ixr(rit,rat) = 0(t; — 1) symmetric functions in pseudotime and become causal

or retarded functions when transformed back to physical

X (Wol [an (rit1), in(0202)]1%0) . (20)  time. This resolves the paradox arising from the previous
In the last step we used the fact that the expectation valugefinition of the action functional.

of the commutator of the density fluctuation operators is Finally we will discuss a useful application of the
equal to the expectation value of the commutator of théyew formalism, namely, a new derivation of the time-
density operators themselves. Similarly farwe obtain  dependent optimized potential method (TDOPM) [17].
Xs,r Which is given by Eq. (20) with¥, replaced byd,. The exchange-correlation patt. of the action func-
From Eq. (17) we see th#t. has a similar structure 8¢ tional can be expanded in terms of Keldysh Green func-
andy,. Transformation to physical time yields the causaltions [18] where the perturbing Hamiltonian is given by
equivalentfy. r. Acting in physical time, Eq. (17) then 7 — A,. The expansion of the logarithm of the evolu-

becomes tion operator yields the set of closed connected diagrams.
el = xh - 8t — 1) FreR - (21) Perturbation theory also requires an adiabatic switching-
’ Iry — 12 ’ on of A — H, in the physical time interval—», 7y) in

This is the basic equation used to calculate excitatiorrder to connect the statdg, and®d,. This is, however,
energies within TDDFT [15,16]. We have thus obtainedreadily achieved by extending the Keldysh contour to
the main result of this paper. All response functions,—o [18]. If we restrict ourselves to the first order terms
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we find that the Hartree term and the term with= u;  to higher order ind — H,, the Keldysh perturbation

cancel and obtain the exchange-only expression expansion, in a similar way, leads to orbital dependent
1 & expressions for the correlation patt of the action. In
Adn] = — = Z f drd®ri d*r, that case one may obtain, from
d) (I‘]T)d) (I‘QT)d)J(l‘lT)(ﬁ] (1‘27') ‘ (22) uxc(rZTZ) _ f dt d3r1 5Axc 6145(1'17'1) . (23)
T c Sus(rim) Sn(ram)

One sees that this functional is an implicit functional of Matrix multiplication by y, and using the chain rule for
n(r7) but an explicit functional of the orbitals. Going differential yields

Axc 6¢ (I'2T2) + 6Axc 6(151'*(1'27-2)
8¢i(rrmy) Sus(rim) 8¢ (ramy) Suyrimy)

In the following we will consider only the realistic case Our results can be summarized as follows: We have
where the functional derivativéA,./8¢; at a physical resolved an existing paradox regarding the causality
potential is the complex conjugate 6f,./8¢;. Calcu- and symmetry properties of response functions within
lating the functional derivative$ ¢;/Su, and 8¢, /Su; TDDFT. This is achieved by introducing an action func-
requires careful consideration of the boundary conditionstional defined on a Keldysh contour. From this action
From Eq. (10) it follows that the staje,) evolves from we furthermore derived the time-dependent Kohn-Sham
7; forward in pseudotime, and therefore the variationsequations and, as an example, the TDOPM equations.

8 ¢; have to satisfy the boundary conditién;(7;) = 0. This work has been supported through a TMR fellow-
However, the complex conjugate stdtky| evolves from  ship of the European Union under Contract No. ERBFM-
7; backwards in pseudotime, and thus the variation8ICT961322. | further wish to thank Carl-Olof Almbladh
d¢; have to satisfy the boundary conditiéhp;(;) =  and Ulf von Barth for useful discussions.

0. Carrying out these variations in a similar way as

in Ref. [17] we obtain from the pseudotime Kohn-Sham

f dty dr x5 (0171, 0272) e (12 72) = Z f dtydry (24)
c
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