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Self-Organization of Steps in Growth of Strained Films on Vicinal Substrates
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Computer simulations show that if stress is present, steps on a vicinal surface can self-organiz
into a regular array of step bunches. Such self-organization can provide templates for subseque
fabrication of “quantum wire” nanostructures. The size and spacing of the bunches can be controlle
independently. We analyze the requirements for optimal ordering. [S0031-9007(97)05273-3]
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The continued miniaturization of electronic devices i
leading us into a realm of nanostructures, which exhib
novel electronic and optical properties, and have a wi
range of potential applications such as single-electr
transistors, quantum-dot lasers, and quantum computi
Quantum well devices are already widespread. Rece
effort has been devoted to fabricating quantum wires a
quantum dots, respectively, one- and zero-dimension
analogs to the quantum well. Just as uniform thickness
a prerequisite for a film in a quantum well device, uniform
size and spacing are prerequisites for applications of wir
and dots.

Different routes to fabricating wires and dots ar
possible. One can perform direct substrate patterni
or lithography [1], or wirelike and dotlike structures
can be induced to “self-assemble” during the growth o
thin films. These self-assembled structures sometim
exhibit surprising uniformity [2–5], suggesting that thei
application in actual devices is a real possibility.

An approach that is, in a sense, a hybrid betwee
deliberate nanopatterning and self-assembly is the u
of vicinal surfaces as templates for the growth of wire
and dots. Such surfaces are cut at a small angle to
atomic planes, creating a staircase of atomic-height ste
that can serve as preferential sites for the growth of wir
[6,7] and the nucleation of clusters [8,9]. But single step
tend to meander [10], and their spacing is often irregul
[7]. These drawbacks have caused difficulties in previo
efforts to use steps to grow semiconductor and metal
wires [6,7] or vertical superlattices [6].

Step bunches, on the other hand, tend to be mu
straighter than individual steps, due to their greater “stif
ness” [10]. They can also have different heights depen
ing on the number of steps in the bunches, allowing th
possibility of different thicknesses for quantum wires, o
direct control of the size of quantum dots that nuclea
on the step bunches [11]. Recently it was shown that t
steps on a vicinal surface can be induced to bunch
introducing stress, through the deposition of a thin lay
of a lattice mismatched film (e.g., a SiGe alloy on S
[12,13]. The problem is tocontrol the bunching, in order
to achieve a useful template structure.
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In this Letter we show, through simulations, that stres
induced step bunching can be controlled to achiev
uniformly sized and uniformly spaced step bunches. W
demonstrate that, when growing in the step-flow mod
one should in principle be able to grow step bunches
any desired size and spacing by adjusting the growth ra
the growth temperature, the substrate step density, or
composition of the alloy.

Step-flow growth is perhaps the simplest mode o
growth imaginable, with deposited atoms diffusing an
attaching to existing steps. Yet it can exhibit comple
behavior. Steps are sometimes observed to bunch, m
often due to kinetic factors [14–16]. Even highly simpli-
fied models of kinetic step bunching exhibit a rich behav
ior that is not completely understood [14].

For a strained layer, there exists an attractive interacti
between steps [13,17]. This leads to a bunching instabil
that is thermodynamically driven, and thus distinct from
kinetic bunching. We focus here on the steady-sta
growth morphology resulting from such stress-induce
step bunching, and on the prospect of systematica
controlling this morphology.

We use a one-dimensional (1D) model [18] for step
flow growth of a surface under stress, such as the surfa
of a heteroepitaxial layer. Steps move only by attachme
and detachment of adatoms, which diffuse across t
terraces driven by gradients in the chemical potentia
These gradients arise because the steps act as sinks
adatoms, and the elastic forces cause some steps to
better sinks than others. One can derive an equation
motion for the steps by integrating the diffusion equatio
for adatoms between steps, with a boundary conditio
determined by thermodynamic equilibrium with the step
[13]. This gives

dxi

dt
­ F

µ
xi11 2 xi21

2

∂
2 B

µ
fi11 2 fi

xi11 2 xi
2

fi21 2 fi

xi21 2 xi

∂
. (1)

Here xi is the position of theith step in the direction
perpendicular to the step;F is the adatom flux per site;
andf is the force per unit length on the step due to elast
© 1998 The American Physical Society
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step-step interactions.B is closely related to the surface
diffusion constant,

B ­
DA
2kT

e2EdykT , (2)

whereD is the adatom diffusion coefficient,A is the area
per surface site, andEd is the detachment energy of a
adatom from a step.

The forcef can be written as

fi ­
X
jfii

µ
a1

sxj 2 xid
2

a2

sxj 2 xid3

∂
. (3)

Herea1 reflects the attractive interaction arising from th
elastic relaxation around each step on a strained layer,
a2 reflects the repulsion arising from the inherent stre
(the “force dipole”) of each step. The elastic theory o
these interactions has been discussed elsewhere [17].

Five parameters define our model:F, B, a1, a2, and
the average step spacingLav (which is determined by
the angle of the overall surface relative to the atom
planes). However, with a rescaling of energy, length, a
time, the behavior depends on only two independent rat
of characteristic lengths:L0yLav , where L0 ­

p
a2ya1

is the equilibrium spacing of an isolated step pair, a
LdyLav , where Ld ­ sBa1yFd1y3 is a length reflecting
both diffusion and strain.L0 can be adjusted througha1

by changing the alloy composition, andLd by changing
the temperature or growth rate.

The parameters used here correspond toL0yLav ­
0.192; the results should be qualitatively similar as lon
as Lav ¿ L0. For convenience, we refer to varying th
flux F, with Ba1 fixed at105, but it would be equivalent,
and perhaps more practical in an experiment, to varyB
through its exponential dependence on temperature.

We simulate the dynamics by direct integration o
Eq. (1). The attractive interaction leads to step bunchi
[13], while the growth flux tends to break up larg
bunches [14]. Breakup of a bunch occurs when the lar
adatom current diffusing to the leading step and drivin
it forward overcomes the step-step attraction. Aft
sufficient time, the system approaches a steady-state
morphology.

Figure 1(a) shows a portion of the surface after reach
steady-state growth forF ­ 25. It consists of rather well-
ordered bunches of 3–4 steps, plus a comparable num
of “free” steps. Individual steps are emitted by one bun
and captured by the next. The step bunches themse
are relatively static, with free steps dynamically attachin
to and detaching from them.

The average bunch size decreases continuously with
creasingFyB, reflecting the competition between thermo
dynamics (strong bunching for smallFyB) and kinetics
(suppression of bunching [14] for largeFyB). Because
larger bunches tend to emit steps, and smaller bunche
capture them, the tendency is for all bunches to conve
to the same size. The spatial distribution of bunches a
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FIG. 1. Sequence of step configurations in the steady-sta
growth regime (from bottom to top) for deposition total-
ing about 1.2 monolayers (ML). The interval between subs
quent configurations corresponds to about 0.2 ML depositio
(a) F ­ 25. A “phase boundary” separates the left and righ
halves of the figure: the left 4 bunches have 4 steps a
the right 5 bunches have 3 steps. The spacings betwe
4-step bunches are consistently larger than those between 3-
bunches. (b)F ­ 30. All bunches have three steps except fo
one with four steps, marked by the arrow.

becomes rather regular, if one ignores the highly mobi
free steps, as Fig. 1(a) shows.

For F ­ 25 (L0yLav ­ 0.192 and Ba1 ­ 105), most
bunches have either 3 or 4 steps. The presence of t
different bunch sizes limits the degree of order. T
quantify the ordering, Fig. 2(a) shows the pair correlatio
function for steps,

gsrd ­
1

Ns

X
ij

dsjxi 2 xj j 2 rd , (4)

of the F ­ 25 steady state, whereNs is the total number
of steps. For a perfectly ordered step-bunch array, th
would be a series of equally spaced sharp peaks, who
width corresponds to the (small) size of the individua
bunches, and whose spacing reflects the spacing betw
bunches.

Figure 2(a) shows a split first peak, indicating th
presence of two distinct bunch separations. These c
1269
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FIG. 2. Step-step correlation functions for steady state
different deposition fluxesF. The results are averaged ove
ten configurations well separated in time. (a)F ­ 25. The
vertical lines with and without arrows mark two separate seri
of peaks, corresponding to two distinct spacings. (b)F ­ 30.
The presence of equally spaced peaks up to high order refle
the strong long-range order of the bunch array.

be associated with bunches of 3 and 4 steps. Moreov
there are higher-order peaks for each spacing, but no lo
order “mixed” spacings. Thus the system appears to
segregating into separate regions of 3-step bunches
4-step bunches. This is confirmed by direct inspectio
of the steady-state configuration. Figure 1(a) shows t
region around a “domain boundary,” with 4-step bunche
on the left, and 3-step bunches on the right.

Our goal is not only to observe step-bunch orderin
but to understand how it may be controlled for nanofab
rication. Perfect uniformity would require all bunches t
have the same size. We therefore increased the flux
F ­ 30, to decrease the average bunch size. In the resu
ing F ­ 30 steady state [Fig. 1(b)] most bunches hav
3 steps. The improved ordering is even more strikin
in the pair correlation function, Fig. 2(b). There is a
1270
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single characteristic bunch spacing, reflected in a series
equally spaced peaks. Moreover, the peaks remain qu
distinct up to at least 13th order, limited only by the siz
of our simulation cell.

So far we have emphasized the average bunch size
controlling the degree of order. From a more fundament
perspective, we must consider the dynamical stability
a given step configuration. Consider for simplicity a
system of straight steps having a short-range attracti
interaction. These will form bunches ofn steps (including
single steps,n ­ 1). It is a reasonable approximation
to treat each bunch as having a chemical potentialmsnd
which depends only on the sizen, and a corresponding
equilibrium density hsnd of adatoms near the bunch.
The velocity of themth bunch may then be obtained by
generalizing the result for single steps [19],

dxm

dt
­

F
2nm

sxm11 2 xm21d

1
D
nm

µ
hsnm11d 2 hsnmd

xm11 2 xm

2
hsnmd 2 hsnm21d

xm 2 xm21

∂
, (5)

wherenm is the size of themth bunch.
At largeF, all the bunches move forward in the growth

direction, with smaller bunches moving more quickly
because of the factor1ynm. At very small F, however,
large bunches move more quickly in the forward directio
because of their lower chemical potential, and the smalle
bunches can actually retreat. In any case, there w
be continual collisions between different-size bunche
leading to coalescence, fragmentation, and/or exchange
steps. Thus it seems natural to expect a complex, chao
evolution of the surface morphology.

For a stable configuration with long-range order, it migh
seem necessary that all steps be in bunches of a sin
size, so that no collisions need occur. However, the
is a competition between energetics, which favors larg
bunches, and kinetics, which favors small bunches
single steps, to better incorporate the arriving atoms. O
simulations suggest that the system automatically balanc
these factors by alternating bunches and single steps.

This alternation is clearly seen in Fig. 1, especiall
in the better-ordered case in Fig. 1(b). The alternatio
is also reflected in Fig. 2(b). The first-order peak fall
almost exactly on an integer spacing (in units ofLav),
corresponding to four steps per period, i.e., one 3-st
bunch and one free step per period. There is al
a small shoulder on the right side of the first-orde
peak, reflecting the fact that there are a few “defec
bunches containing four steps. These defect bunches
presumably responsible for much of the damping an
broadening of the high-order peaks in Fig. 2(b). Thi
alternation of bunches and free steps is consistent w
previous 2D simulations of Kandel and Weeks [14], i
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one notices that for a given lateral position there is on
one “crossing step” (the 2D analog of our single step
between bunches.

This arrangement of alternating single steps a
bunches has a special behavior that may account for
occurrence. Consider a periodic structure with one bun
and one single step per period. In this case, from Eq.
the velocities of all the bunches are the same, as are th
of all the single steps, independent of the positions
the single steps relative to the bunches. So one may
effect have two coexisting periodic arrays, one of sing
steps and one of bunches, moving independently of ea
other.

There is one further ingredient needed to make t
arrangement of alternating bunches and steps dynamic
stable: the bunches must remain in a dynamic equilibriu
with the free steps. Whenever a single step collides w
a bunch, the bunch must emit a single step from
other side, so that the distribution of sizes is preserve
Thus a bunch of some sizeM must be stable for the
given conditions, while a bunch ofM 1 1 is unstable
and immediately loses a step. In that way, single ste
appear to pass through the bunch, although the act
event is capture followed by emission of a different ste
If this special configuration acts as a sort of dynamic
“attractor,” it may account for the two-phase behavio
observed forF ­ 25.

We emphasize that we do not yet understand t
dynamics in detail, especially the “phase separation
Nevertheless, we have demonstrated that considera
control of the ordering is possible. In actual growth
such control would probably requirein situ diffraction
measurements, so that flux or temperature could be var
to optimize the degree of order. The two-phase behavi
in particular, could simplify this procedure. In that cas
two distinct periods would coexist on the sample, an
one could simply vary the growth conditions until th
diffraction spot for one period disappears.

In conclusion, in step-flow growth of strained lay
ers there is a competition between thermodynamic s
bunching and kinetic debunching. This leads to a d
namic steady state, with finite-size step bunches exhib
ing considerable uniformity and long-range order. Mo
important, the bunch size and spacing can be directly co
trolled and the ordering can be systematically improve
by tuning the temperature and/or the flux. Through co
trol of growth parameters, degree of stress, and cho
of substrate miscut, it should be possible to create a
desired size and spacing of step bunches. Such s
assembled and self-organized step-bunch arrays hold c
siderable promise as templates for subsequent fabrica
of quantum wires and quantum dots.

Supported in part by NSF Grants No. DMR 93-0491
and No. DMR 96-32527.
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