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Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys
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The solution energies of4d metals in other4d metals as well as the bcc-hcp structural energy
differences in random4d alloys are calculated by density functional theory. It is shown that the crystal
structure of the host plays a crucial role in the solid solubility. A local virtual bond approximation
accounts for the calculated solution energies and explains the substantial reduction in structural ener
caused by randomness. [S0031-9007(97)05224-1]
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The “macroscopic atom” model of enthalpy effects in
alloys developed by Miedema and co-workers [1,2] ha
been highly influential in practical metallurgy work. One
important aspect of the model is the possibility to predic
impurity solution energies in solid solutions about whic
very little is known even in binary systems except for a few
experimental values [2,3]. Even today, with the advent o
accurate first-principles computer techniques calculatio
of impurity solution energies have only been performe
for a few systems [4–7], and the general trends across
periodic table have not been established.

Miedema and Niessen [2,8,9] discuss in their pionee
ing work three contributions to the impurity solution en
ergy: a chemical contribution which includes “liquidlike”
interactions, a relaxation contribution arising from atomi
size mismatch of the host atoms and impurity, and a stru
tural contribution, i.e., an additional contribution due to
the fact that the crystal structure of the host is fixed du
ing solution. It is the structural contribution which is the
subject of the present paper, and we note that intuitive
it does not seem to be pronounced, let alone domina
However, from the analysis of Zr-based phase diagram
Miedema and Niessen [8] find that the solubilities of othe
transition metals in the two structural forms of Zr, hcp
and bcc, differ dramatically and thereby provide the firs
indication that the structural contribution to the heat of so
lution may, in fact, play an important role in determining
the phase diagrams of transition metal alloys.

The model of Miedema and Niessen for the structur
contribution to the solution energy in transition meta
alloys exploit the fact that the structural energy difference
in the pure transition metals may be considered canonic
[10] functions of the valenced-band occupation number
Nd [11–13]. Hence, in the spirit of the virtual crystal
approximation (VCA) they assume that for a given crysta
structure thed bands in a randomA12cBc alloy are those of
an “average” pure metal and use for the structural ener
differences in the alloy the canonical curves correspondi
to the pure metal bands but occupied by the concentrati
weighted averaged occupations1 2 cdNA

d 1 cNB
d . At

first sight, this appears reasonable, at least in the dilute lim
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of the impurity concentrationc, and indeed the model turns
out to be quite successful in explaining the crystal-structur
effect on the solid solubility in the Zr-Pd system [8].

In the present Letter, we demonstrate on the basis of e
tensive density functional theory (DFT) calculations [14
of solution energies in4d transition metal alloys that the
crystal-structure contribution plays a major role in the solid
solubility of transition metals in transition metals. We also
develop a model, the virtual bond approximation (VBA),
based on a local description of the bonding in dilute alloys
which is able to account qualitatively and semiquantita
tively for the solution energy differences between differen
host crystal structures as well as for the structural energ
differences of random alloys. This subject is not treate
within ordinary theory of phase transformations in alloys
[15] nor is it considered in first-principles calculations of
phase diagrams [16,17].

We present in Fig. 1 a database of solution energie
of the 4d metals in other4d metals calculated using the
definition

Ea
solsB ! Ad ­

≠Ea
A12cBc

≠c

Ç
c­0

1Ea
A 2 E

b
B , (1)

of the energy in the dilute limit of metalB in an A host
having ana structure [6]. Here,Ea

A12cBc
, E

b
A , andE

b
B are

the total energies of theA12cBc alloy and the pure metals
in thea andb structures, respectively. The details of the
calculations are given in Refs. [18,19]. We do not includ
the effect of lattice relaxations around the impurity but fo
the present systems with moderate size mismatches th
are small [20], and we expect the results to provide at lea
a qualitative description of the “chemical” and crystal-
structure contributions.

At first sight the results in Fig. 1 do not seem to exhibi
any recognizable trends. If, for instance, we employ th
qualitative theories of bonding in transition metal alloys
based on tight-binding or Friedel-like considerations [21
23], we expect the solution energies to be smooth fun
tions of the average number ofd electrons of the alloy
components or their difference,DNd ­ NA

d 2 NB
d . This

is obviously not the case and the reason for the irregul
© 1998 The American Physical Society
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FIG. 1. Solution energies for4d metals in 4d metal hosts
calculated by (1). The thin lines connect results for a particu
impurity and the host crystal structure is indicated at th
abscissa.

changes of the solution energies from one host to the n
cannot be explained on the basis of considerations wh
do not include structural effects.

Closer inspection of Fig. 1 reveals a very simple ru
which makes the results systematic and easy to descr
Consider the elements ordered according tod occupation.
Then, if the element next to the host in the direction
an impurity has the same crystal structure as the host
solution energy increases, otherwise it decreases. As
example let us consider impurity solution energies in b
Mo. The neighboring element on the right-hand side
Mo is hcp Tc, and we observe that all the elements fro
Tc to Pd have positive solution energies in Mo. Con
versely, the neighboring element on the left-hand side
bcc Nb and both Nb and Zr have negative solution ene
gies. In fact, the rule works so well, especially at the b
ginning of the series, that one may safely conclude that
solution energies of transition metals in Zr, Nb, Mo, an
Tc are almost solely determined by the crystal-structu
contribution.

To show that structure plays an important role for th
solid solubility of transition metals we discuss the firs
principles local density approximation (LDA) results o
the basis of the difference in solution energy of an impuri
in a given host of different crystal structures defined by

DE
a2b
sol ; Ea

sol 2 E
b
sol ­

≠DE
a2b
A12cBc

≠c

Ç
c­0

1DE
a2b
A ,

(2)

where DE
a2b
A12cBc

and DE
a2b
A are the structural energy

difference in the randomA12cBc alloy and the host,
respectively. We further write the total energy of the allo
in terms of two-body potentials (a generalization to man
site interactions is straightforward),
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Ea
A12cBc

­ ys0d 1 s1 2 cd2y
s22ad
AA

1 2cs1 2 cdys22ad
AB 1 c2y

s22ad
BB . (3)

Here,ys0d is the on-site term andy
s22ad
XY is obtained as the

sum over the whole lattice of pair potentials acting betwe
X andY atoms. In particular,y

s22ad
AB ­ 1

2

P
ifij V

s2d
ABsRi 2

Rjd, whereV
s2d
AB are structure-independent potentials d

fined, for instance, by Moriarty [24] and the sums run ov
the lattice sites in thea structure.

From (2) and (3) we obtain

DE
a2b
sol ­ 2fys22ad

AB 2 y
s22bd
AB g 2 fys22ad

AA 2 y
s22bd
AA g ,

(4)

where the last term in the square brackets now represe
the a-b structural-energy difference in the hostA. To
continue, we model the interaction potentials betwe
different kinds of atoms represented in the first term
(4) by the assumption that they are canonical functions
the average number ofd electrons in anAB bond. This
we call the virtual bond approximation, and it means th
an n-body potential ofk A atoms andn 2 k B atoms,
y

sn2ad
AA···BB, is equal to then-body potential of a pure meta

C, y
sn2ad
C···CC with the number ofd electrons given byNC

d ­
1
n fkNA

d 1 sn 2 kdNB
d g. The so-defined VBA is equivalent

to the VCA used, e.g., by Miedema and co-workers [2
when the dominant interactions in the alloy aren-body
potentials which involve bonding in the entire crystal, i.e
n ! `. A similar model [25] has been used with succe
to explain the site substitutional behavior of alld impurities
in Ni3Al [26].

In the VBA pair-potentialsys2dd approximation we now
have

DE
a2b
sol ­ 2DE

a2b
C sNC

d d 2 DE
a2b
C sNA

d d , (5)

whereNC
d ­ 1

2 sNA
d 1 NB

d d and DE
a2b
C is the canonical

structural energy difference curve included in Fig. 2. A
we shall demonstrate below this simple expression co
tains the physics of the structural contribution to the so
solubility.

The structural difference in the solution energies
the 4d metals obtained directly from first principles ar
plotted in Fig. 2 as functions ofNC

d . We immediately
observe that the values in the figure are unexpectedly la
compared to the solution energies themselves, Fig. 1,
well as to the canonical structural-energy differences a
first-principles results for random4d alloys, Fig. 3(b).
Nonetheless, the VBA-ys2d model defined above provides
a good fit to these first-principles results. To see this w
note that (5) may be used to extractDE

a2b
C sNC

d d from
the first-principles resultsDE

bcc-hcp
sol in Fig. 2 knowing the

canonical curve for the elementsDE
bcc-hcp
C sNA

d d. Further,
if the VBA-ys2d model is correct the energies extracted
this manner should, when plotted as functions ofNC

d fall on
the canonical curve. As seen in Fig. 3(a) the reproduct
of the canonical curve is near perfect showing the valid
1241
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FIG. 2. The calculated bcc-hcp structural difference in th
solution energy for four4d hosts, filled symbols, plotted as a
function of the occupation of an impurity-host bond. A dotte
line connects results for a particular host and along the li
the sequence of impurities is Zr, Nb, Mo, Tc, and Ru. Th
hosts are labeled by large letters and the impurities by sma
letters. For comparison the figure also includes the structu
energies for elemental metals [11–13] here calculated in t
atomic sphere approximation and indicated by a thin line.

of the VBA. The few exceptions, late4d metals in Zr and
Nb hosts and early4d metals in a Mo host, are expected
from the fact that pair interactions alone cannot reprodu
the structural energy difference for these elements [27,2
In fact, the introduction of higher many-body potential
into (4) improve the results of the VBA-ys2d model.

The fact that it is the simple average occupationNC
d

rather than the concentration weighted average which e
ters the first term in (5) shows that, apart from the host co
tribution, the structural part of the impurity solution energ
is governed by local effects in the form of thed occupation
of the impuritybonds. This local bond picture has impor-
tant and unexpected consequences for the structural ene
differences in random alloys which to our knowledge hav
not been considered in the literature. In the VCA for
random alloy all lattice sites are equivalent, and it is ther
fore generally assumed that the structural energy diffe
ences in such alloys may be given by the canonical cur
for a pure metal at the concentration averagedd occupa-
tion. The first-principles calculations included in Fig. 3(b
show that this assumption is, in fact, not correct. Instea
the structural energies are substantially reduced as a re
of the random local environment. We note that the VBA
ys2d model captures this reduction.

To explain this result as well as the local bond model fo
impurity solution energies we show in Fig. 4 the densit
of states (DOS) for the valenced electrons (d-DOS) in
MoPd for three states of different order,B2, B11, and
completely random, together with thed-DOS for bcc Ru
which is the average element corresponding to MoPd. A
calculations are performed at the same volume and
1242
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FIG. 3. (a) Comparison between the structural energy diffe
ence curve for elemental metals, thin line, andDE

a2b
C sNC

d d
extracted from the first-principles results by (1), filled symbols
(b) The calculated bcc-hcp structural energy difference in ra
dom Zr-Pd and Mo-Pd alloys, heavy lines. The results of th
VBA-ys2d model, DE

a2b
A12cBc ­ 2cs1 2 cdDEa2bsNd

Cd 1 s1 2

cd2DEa2bsNd
A d 1 c2DEa2bsNd

Bd, indicated by broken lines.

the same underlying crystal lattice. In theB2 structure
all nearest neighbors of Mo are Pd atoms, i.e., all neare
neighbor bonds are Mo-Pd bonds. According to the VB
these bonds should correspond to those of Ru, and
this reason thed-DOS of Ru andB2-MoPd [29] shown
in Fig. 4 are very similar.

FIG. 4. Calculatedd state densities. The upper panel show
results for B2 MoPd and the corresponding average eleme
bcc Ru. The lower panel shows results forB11 MoPd and a
completely random bcc MoPd alloy.
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On the other hand, in theB11 structure every Mo
atom has four Mo and four Pd as nearest neighbors a
similar for Pd. Hence, the nearest neighbor environme
for each atom in a two-atom nearest neighbor bond mod
corresponds to the completely random alloy. It is therefo
not surprising that thed-DOS for theB11 structure is very
close to that of the random alloy. However, the importa
and unexpected point is that thed-DOS for the completely
random MoPd alloy does not show any resemblance
that of the bcc transition metals. That is, the existen
of three different types of bonds Mo-Mo, Pd-Pd, and Mo
Pd completely destroys the electronic states responsible
stabilizing the hcp structure in this case.

In conclusion, we discuss the results of the model
enthalpy of solution based on the VCA and presented
Ref. [2], in relation to the present calculations. First, w
find the solution energy of Pd in hcp Zr to be 0.14 eV
cf. Fig. 1, and in bcc Zr to be20.44 eV. This is in
qualitative agreement with the values in Table II-4 o
Ref. [2], and leads to the prediction of a large solubility o
Pd in bcc Zr and a small solubility in hcp Zr which agree
with the experimental phase diagram. Second, we note t
in the VCA the structural difference in the solution energ
will be a linear function of thed occupation. According
to Fig. 2 this is only a good approximation in a limitedd
occupation range. Finally, the VCA does not account fo
the substantial reduction of the structural energy differen
caused by randomness, even in the dilute limit. Since t
VCA is often assumed to hold for random alloys this resu
should have important consequences within alloy theory
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