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Turbulent Bénard-Marangoni Convection: Results of Two-Dimensional Simulations
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We report long-time direct numerical simulations of two-dimensional Bénard-Marangoni convection
at a low Prandtl number driven exclusively by surface tension gradients. At high Marangoni numbers
we observe a turbulent flow characterized by a cycle of vorticity generation at the free surface
and injection of surface vorticity into the layer. The energy dissipation obeys the Kolmogorov
scaling. Our results differ from predictions of a scaling analysis by Pumir and Blumenfeld, but agree
with a modified theory which takes the moderate Peclet numbers in the simulations into account.
[S0031-9007(98)05322-8]
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Rayleigh-Bénard convection has become a paradig
for the study of buoyancy-driven turbulence [1] due t
its conceptual simplicity and the unprecedented accura
with which the scaling law Nu~ Ra2y7 was established
both experimentally [2] and theoretically [3–5]. By
contrast, very little is known about the turbulent behavio
of surface-tension-driven convection in a layer heate
from below (Bénard-Marangoni convection) [6,7]. Only a
single phenomenological prediction, namely, Nu~ Ma1y3

[8] exists to date, relating the Nusselt number Nu i
a turbulent fluid layer with a free upper surface to th
Marangoni number Ma. This nondimensional paramet
is the analog of the Rayleigh number Ra for surface
tension-driven flows.

In this Letter we report direct numerical simulations
which, for the first time, extend sufficiently far into the
nonlinear regime to obtain a fully developed turbulen
state and to uncover the relevant scaling laws. Th
prediction of turbulent convection driven by surface
tension gradients is of interest in many engineerin
applications. Examples include welding [9], electro
beam melting and evaporation [10], steelmaking [11], an
chemical engineering [12]. Moreover, understanding o
turbulent Bénard-Marangoni convection may shed ne
light on other flows driven by surface shear such as win
driven turbulence [13] and flows in electromagneticall
levitated drops [14]. The geometric simplicity of the
Bénard-Marangoni problem makes it a prototype syste
for the study of surface-tension-driven turbulence.

We focus on low-Prandtl-number fluids (liquid metals
typical of most applications mentioned above. Furthe
more, we consider two-dimensional motions, an approa
that permits us to conduct long-time simulations at ver
high Marangoni numbers which presently cannot be rea
ized in three dimensions. The utility of two-dimensiona
simulations for the understanding of turbulent convec
tion has been demonstrated by DeLucaet al. [3,4] for the
Rayleigh-Bénard problem. Moreover, two dimensionalit
of the flow can, in principle, be achieved by applying
constant magnetic field parallel to the fluid surface [15].
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Our computational model for Bénard-Marangoni con
vection in a layer0 # z # 1 with periodic boundary
conditions in x comprises the following dimensionless
equations and boundary conditions:

≠tv 1 sv ? =dv ­ 2=p 1 P=2v , (1a)

= ? v ­ 0 , (1b)

≠tT 1 sv ? =dT ­ =2T . (1c)

yx ­ yz ­ 0, T ­ 1 sat z ­ 0d , (1d)

yx ­ 0, ≠zT ­ 21,

≠zyx ­ 2Ma≠xT sat z ­ 1d .
(1e)

Equations (1) are based on the layer thicknessd as a
unit of length, d2yk as a unit of time, andqdyl as a
unit of temperature, whereq is the prescribed heat flux
at the free surface andl denotes the heat conductivity
of the fluid. Velocityv ­ yxex 1 yzez and temperature
T depend only onx, z. The Prandtl numberP ­ nyk

represents the ratio of kinematic viscosity and therma
diffusivity. We assume the relations ­ s0 2 gT for
the temperature dependence of the surface tensions.
The Marangoni number is defined as Ma­ gqd2ylrnk,
wherer denotes the density of the fluid. Instability of the
basic statev ­ 0, T ­ 1 2 z occurs above Mac ø 79.6
for a wave numberkc ø 1.99 [6]. Since the heat flux is
prescribed, convection reduces the temperature differen
across the layer. Therefore, the Nusselt number is defin
as

Nu ­ 1ykDT l . (2)

where kDTl denotes the mean temperature differenc
between the bottom and free surface. Both system (
and the system investigated in [16] are translationall
invariant with respect tox. The important difference
between them consists of the boundary conditionyx ­ 0
at the bottom of the layer. When it is replaced with
≠yxy≠z ­ 0 (free slip), only steady flows are obtained.
In contrast to the free-slip case, linear momentum is not
© 1998 The American Physical Society
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conserved quantity, i.e., the mean flow

Q ­
Z 1

0
yx dz (3)

can become nonzero. Translational invariance is usua
broken in practical situations, e.g., by lateral wall
Nevertheless, the results should have some relevance
situations where the effect of the walls is weak, e.g.,
large aspect ratio containers.

We solve the system (1) numerically by using a pse
dospectral Fourier-Chebyshev method. In order to ens
high resolution with a moderate number of modes, w
have selected the small periodicity lengthL ­ 2. The
corresponding critical Marangoni number is Maø 101.3.
We chooseP ­ 0.1 as a compromise between the mo
realistic value P ­ 0.01 with only a modest achiev-
able Peclet number Pe and the unrealistic valueP ­ 1,
which permits one, however, to obtain Pe¿ 1. We
have explored the parameter space up to Ma­ 1.2 3

105, which corresponds to three decades above the
set of instability. At present, this cannot be achieve
in three-dimensional simulations. In terms of advectiv
time scales, the simulations have been run significan
longer than previous Rayleigh-Bénard simulations [3–5
Table I shows that the present numerical results co
several hundred large-scale eddy turnover times.

Our simulations suggest a rough division into tw
parameter ranges with significantly different behavior
the system. This is reminiscent of “soft” and “hard
turbulence in Rayleigh-Bénard convection [3,4]. Fo
Ma , 4 3 104 we find the scaling exponent for Nu on
Ma to be close to the inertial value1y3 [16]. This inertial
or flywheel regime is replaced by a turbulent regim
beyond Maø 4 3 104.

Let us briefly describe the inertial case before analy
ing the turbulent case. For slightly supercritical values
the Marangoni number, the flow pattern takes the form
steady rolls. Upon increasing Ma, the dynamics becom
increasingly complex. We first observe laterally travelin
rolls with Q fi 0. Later, the motion becomes oscillatory
Regardless of the temporal dynamics, the inertial flow p
tern is characterized by flat vorticity distributions in th
interior of the rolls. Energy input and dissipation in on

TABLE I. Data from turbulent runs. Numerical resolution i
512 3 129 collocation points. Total timetrun in units d2yk; n
denotes the number of roll turns estimated from the time4dyy
for a single turn with rms velocity.´, Re, and Nu represent
averages overtrun. ´ is measured in unitsk3yd4.

Ma trun n Re Nu ´

4.0 3 104 13.8 236 684 5.24 5.62 3 104

5.0 3 104 12.9 231 717 5.30 7.58 3 104

6.0 3 104 17.6 344 781 5.41 9.75 3 104

8.0 3 104 15.9 359 903 5.79 1.42 3 105

1.0 3 105 12.7 312 983 5.63 2.01 3 105

1.2 3 105 11.8 316 1073 5.84 2.59 3 105
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turnover of the rolls are small compared with the total ki-
netic energy of the flow. The surface shear accelerate
the fluid along the surface towards the maxima of surfac
tension corresponding to the minima of surface tempera
ture. In this way, sheets of opposite vorticity are generate
at the free surface, which supply energy to rolls beneat
them. These vortex sheets meet in stagnation points a
inject jets of fluid into the bulk. Interaction between the
lateral motion of the rolls and the jets is responsible fo
the rich dynamic behavior of the system. Figure 1 con
tains an example of quasiperiodic dynamics governed b
two processes on different time scales, namely, a shor
time oscillation of the size of the rolls seen in the Nussel
number plot in Fig. 1(a) and a long-time oscillation of the
amplitude of the mean flow shown in Fig. 1(b). Because
of the inertial character of the flow, many roll turnovers
are required for a relatively large change in the energy a
sociated with the long-time oscillation.

In the turbulent regime we observe complex spatial an
temporal dynamics. Figures 1(a) and 1(b) demonstra
the irregular temporal evolution of Nu andQ, in contrast
to the quasiperiodic regime. In spite of the spatiotempo
ral irregularity, reversals of the mean flow on very long
(viscous) time scales persist in the flow. This behavio
resembles the random rotational motion of the mean flo

FIG. 1. Temporal evolution of Nu and the mean flowQ in
the quasiperiodicsMa ­ 5 3 103d and turbulent casesMa ­
6 3 104d. Notice the slow dynamics inQ. [(a) and (b), see
text.]
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Nu
in Rayleigh-Bénard convection at a low Prandtl numb
[17]. Spatial irregularity and scale separation as char
teristic features of turbulent motion are obvious from th
snapshots of the vorticity fieldv ­ ≠xyz 2 ≠zyx shown
in Fig. 2. They also demonstrate the mechanism of t
turbulent dynamics. In the upflow stagnation region
the free surface, new vorticity is generated because
the thermocapillary instability. The slow lateral motio
of the rolls drags fluid from this region into a vorte
sheet, which amplifies the perturbation and advects it
wards the downflow region. In this way, blobs of vortic
ity form at the free surface, which are injected into th
layer [cf. the central white blob of vorticity at the free
surface in the upflow region in Fig. 2(a) and its positio
in Fig. 2(b)]. Distorting bulk motion disrupts the jet as
penetrates the layer [Fig. 2(c)]. As a result, vortices a
generated, which are swept across the bulk by the lar
scale circulation.

Transition to turbulent behavior is reflected in the int
gral quantities shown in Fig. 3. Here, the average ene
dissipation rate per unit masśis plotted as a function of
the Reynolds number Re, and Re and Nu are shown
functions of Ma. All three quantities are temporal ave
ages from the runs listed in Table I. The Reynolds num

FIG. 2. Vorticity snapshots for Ma­ 6 3 104. Black and
white corresponds to large negative and positive values. T
downward jet corresponds to the black and white “strip
branching off the upper surface. Injection of surface vortici
into the layer is exemplified by the motion of the central whi
blob of vorticity at the free surface in (a). [See text for a
explanation of (a)–(c)].
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ber Re­ yyP is based on the rms (integral) velocityy

defined by

y2 ­
1

trunL

Z trun

0

Z 1

0

Z L

0
y2sx, z, td dx dz dt . (4)

In our dimensionless units, the quantitý is given by
´ ­ Pv2 with the same definition of the overbar symbo
as in Eq. (4). Data from the inertial regime (Ma­ 104 up
to Ma ­ 3 3 104) are fitted by the relations

´ ~ Re2.2, Re ~ Ma0.58, Nu ~ Ma0.30, (5)

whereas for the turbulent regimesMa $ 4 3 104d we
obtain

´ ~ Re3.2. Re ~ Ma0.43, Nu ~ Ma0.10. (6)

The turbulent character of the flow changes the´ scaling
on Re. The observed relatioń~ Re3.2 is close to the re-
lation´ ~ Re3 from Kolmogorov’s phenomenological the-
ory, indicating a state of developed turbulence. Notice th
the specific forḿ ~ Re3 arises upon nondimensionaliza-
tion from ´ ~ U3yd in dimensional units [18], whereU
denotes the integral velocity. The more efficient energ
dissipation in the turbulent regime affects the scaling o

FIG. 3. Power law scaling of the energy dissipation rate´ per
unit mass vs the Reynolds number Re (a), and Re (b) and
(c) vs Ma.
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the other quantities on Ma. In the turbulent regime th
growth of Re and Nu with Ma is slowed down. The pre
dictions,

Re ~ P22y3Ma1y3, Nu ~ P1y3Ma1y3, (7)

of Pumir and Blumenfeld [8] are not verified by our resu
(6). They assume turbulent transport of both momentu
and heat, i.e., they consider the limit of large Re an
Pe. The Kolmogorov scaling of energy dissipation i
our simulations indicates turbulent momentum transpo
However, since Pe is smaller by a factor ofP compared
with Re, the transport of heat may not yet be turbulen
In fact, a modification of the phenomenological mode
of [8] substituting heat transport through laminar therm
boundary layers for turbulent heat transport gives bett
agreement with our data, as we now show.

As a first step in the derivation, we observe tha
production and dissipation of kinetic energy balance
a statistically stationary state. This implies

2Ma
Z L

0
yx≠xT dx ­ P21

Z 1

0

Z L

0
´ dx dz , (8)

where the surface integral on the left-hand side corr
sponds to the production of kinetic energy due to th
Marangoni effect, and the right-hand side represents t
bulent viscous dissipation. We assume that´ ­ Cu3,
whereC is a dimensionless constant, and that the surfa
velocity is of the same order as the average velocityu
in the bulk. The free surface dynamics suggests a stro
correlation between surface velocity and surface tempe
ture gradients. Therefore we take Mauk≠xT lL as an es-
timate of the production term, wherek≠xT l denotes the
rms average of the horizontal temperature gradient at t
free surface. The temperature field is assumed const
in the bulk with thermal boundary layers at the top an
bottom surfaces. The thickness of the top layer is of o
der 1y

p
u. Since≠zT ­ 21 at the top surface, the total

temperature difference between top and bottom is of ord
1y

p
u, hence Nu~

p
u. Moreover,Lk≠xT l is assumed to

be of the same order as the temperature drop across
boundary layer. Our estimate for the energy productio
term is therefore Ma

p
u. Using Eq. (8) and Re~ uyP,

we obtain the modified scaling relations

Re ~ P23y5Md2y5, Nu ~ P1y5Ma1y5. (9)

Our numerical results (6) for the scaling of Re with Ma
are in reasonable agreement with (9), but the expone
for Nu is significantly less than1y5. This discrepancy
is probably related to slow convergence for the avera
values of Nu because of the large fluctuations in N
shown in Fig. 1(a). Notice that the predicted exponen
of P in (9) are based on the universality ofC [18].
Nonuniversality will modify theP dependence in (9).

As a final observation we mention that, from th
description of the system using Kolmogorov scaling
one may infer that a finite energy dissipation rate
maintained in the small viscosity limit. This property
is remarkable from the viewpoint of two-dimensiona
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turbulence, since the two-dimensional Euler equation
regular, implying that the energy cascade to low wa
numbers is normally incompatible with a statisticall
stationary state [19]. We attribute the finite energ
dissipation rate in two-dimensional Bénard-Marango
convection to the generation of (singular) vortex shee
in the inviscid limit. This becomes apparent whe
the Marangoni boundary condition is written in th
dimensional formv ­ g≠xTyn.

In summary, we have reported direct numerical sim
lations of turbulent Bénard-Marangoni convection. W
find Kolmogorov scaling for the energy dissipation fo
Marangoni numbers between4 3 104 and 1.2 3 105.
The scaling laws for Reynolds and Nusselt numbers diff
from the prediction of [8] since heat transport throug
laminar boundary layers has not yet been replaced
turbulent heat transport.

We are grateful to Ch. Karcher, N. Kukharkin, an
A. Pumir for interesting discussions. Financial suppo
from the Deutsche Forschungsgemeinschaft under Gra
No. Th 497/9-1 and No. Th 497/9-2 is acknowledged.

[1] E. D. Siggia, Annu. Rev. Fluid Mech.26, 137–168 (1994).
[2] B. Castaing, G. Gunaratne, F. Heslot, L. Kadanof

A. Libchaber, S. Thomae, X. Z. Wu, S. Zaleski, an
G. Zanetti, J. Fluid Mech.204, 1–30 (1989).

[3] E. E. DeLuca, J. Werne, R. Rosner, and F. Cattaneo, Ph
Rev. Lett.64, 2370–2373 (1990).

[4] J. Werne, E. E. DeLuca, R. Rosner, and F. Cattaneo, Ph
Rev. Lett.67, 3519–3522 (1991).

[5] R. M. Kerr, J. Fluid Mech.310, 139–180 (1996).
[6] J. R. A. Pearson, J. Fluid Mech.4, 489–500 (1958).
[7] S. H. Davis, Annu. Rev. Fluid Mech.19, 403–435 (1987).
[8] A. Pumir and L. Blumenfeld, Phys. Rev. E54, R4528–

R4531 (1996).
[9] T. DebRoy and S. A. David, Mod. Phys.67, 85–112

(1995).
[10] S. Schiller, U. Heisig, and S. Panzer,Electron Beam

Technology,(Wiley, New York, 1982).
[11] J. Szekely,Fluid Flow Phenomena in Metals Processing

(Academic, New York, 1979).
[12] D. A. Edwards, H. Brenner, and D. T. Wasan,Interfa-

cial Transport Processes and Rheology,(Butterworth-
Heinemann, Boston, 1991).

[13] V. Borue, S. A. Orszag, and I. Staroselsky, J. Fluid Mec
286, 1–23 (1995).

[14] A. D. Sneyd and H. K. Moffatt, J. Fluid Mech.117, 45
(1982).

[15] F. H. Busse and R. M. Clever, J. Fluid Mech.102, 75–83
(1981).

[16] T. Boeck and A. Thess, J. Fluid Mech.350, 149 (1997).
[17] S. Cioni, S. Ciliberto, and J. Sommeria, J. Fluid Mech

335, 111–140 (1997).
[18] U. Frisch, Turbulence, (Cambridge University Press,

Cambridge, England, 1995).
[19] C. R. Doering and J. D. Gibbon,Applied Analysis of the

Navier-Stokes Equations,(Cambridge University Press,
Cambridge, England, 1995).
1219


