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Turbulent Bénard-Marangoni Convection: Results of Two-Dimensional Simulations
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We report long-time direct numerical simulations of two-dimensional Bénard-Marangoni convection
at a low Prandtl number driven exclusively by surface tension gradients. At high Marangoni numbers
we observe a turbulent flow characterized by a cycle of vorticity generation at the free surface
and injection of surface vorticity into the layer. The energy dissipation obeys the Kolmogorov
scaling. Our results differ from predictions of a scaling analysis by Pumir and Blumenfeld, but agree
with a modified theory which takes the moderate Peclet numbers in the simulations into account.
[S0031-9007(98)05322-8]
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Rayleigh-Bénard convection has become a paradigm Our computational model for Bénard-Marangoni con-
for the study of buoyancy-driven turbulence [1] due tovection in a layer0 = z = 1 with periodic boundary
its conceptual simplicity and the unprecedented accuracgonditions inx comprises the following dimensionless
with which the scaling law Nuc R&/7 was established equations and boundary conditions:
both experimentally [2] and theoretically [3-5]. By
contrast, very little is known about the turbulent behavior 0y + (V- Vv = =Vp + PV, (1a)
of surface-tension-driven convection in a layer heated V-v=0, (1b)
from below (Bénard-Marangoni convection) [6,7]. Only a

single phenomenological prediction, namely, MuMa!/? T + (v V)T =VT. (1c)
[8] exists to date, relating the Nusselt number Nu in vy = v, =0, T=1(atz =0), (1d)
a turbulent fluid layer with a free upper surface to the

Marangoni number Ma. This nondimensional parameter vr =0, 9.T = —1, (1e)
is the analog of the Rayleigh number Ra for surface- 9,v, = —Maa, T (atz = 1).

tension-driven flows. ] ]

In this Letter we report direct numerical simulations Equations (1) are based on the layer thickngsas a
which, for the first time, extend sufficiently far into the Unit of length,d*/« as a unit of time, and;d/A as a
nonlinear regime to obtain a fully developed turbulentunit of temperature, wherg is the prescribed heat flux
state and to uncover the relevant scaling laws. Thé&!t the free surface and denotes the heat conductivity
prediction of turbulent convection driven by surface©f the fluid. Velocityv = v.e, + v.e; and temperature
tension gradients is of interest in many engineering/ depend only onx,z. The Prandtl numbeP = v/«
applications. Examples include welding [9], electronfépresents the ratio of klnematlg viscosity and thermal
beam melting and evaporation [10], steelmaking [11], andliffusivity. We assume the relationr = op — yT for
chemical engineering [12]. Moreover, understanding ofhe temperature dependence of the surface tension
turbulent Bénard-Marangoni convection may shed new he Marangoni number is defined as Mayqd®/Apv«,
light on other flows driven by surface shear such as windWherep denotes the density of the fluid. Instability of the
driven turbulence [13] and flows in electromagneticallybasic stater = 0, T =1 — z occurs above Ma= 79.6
levitated drops [14]. The geometric simplicity of the for a wave numbek, ~ 1.99 [6]. Since the heat flux is
Bénard-Marangoni problem makes it a prototype systenq)rescrlbed, convection reduces the temperature difference

for the study of surface-tension-driven turbulence. across the layer. Therefore, the Nusselt number is defined
We focus on low-Prandtl-number fluids (liquid metals) @S
typical of most applications mentioned above. Further- Nu = 1/(AT). )

more, we consider two-dimensional motions, an approach

that permits us to conduct long-time simulations at verywhere (AT) denotes the mean temperature difference
high Marangoni numbers which presently cannot be realbetween the bottom and free surface. Both system (1)
ized in three dimensions. The utility of two-dimensionaland the system investigated in [16] are translationally
simulations for the understanding of turbulent convecdnvariant with respect tax. The important difference
tion has been demonstrated by DeLwtal. [3,4] for the  between them consists of the boundary conditign= 0
Rayleigh-Bénard problem. Moreover, two dimensionalityat the bottom of the layer. When it is replaced with
of the flow can, in principle, be achieved by applying adv,/dz = 0 (free slip), only steady flows are obtained.
constant magnetic field parallel to the fluid surface [15]. In contrast to the free-slip case, linear momentum is not a
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conserved quantity, i.e., the mean flow turnover of the rolls are small compared with the total ki-
1 netic energy of the flow. The surface shear accelerates
0 = f vy dz (3) the fluid along the surface towards the maxima of surface
0

tension corresponding to the minima of surface tempera-

can become nonzero. Translational invariance is usuallfure. Inthis way, sheets of opposite vorticity are generated
broken in practical situations, e.g., by lateral walls.at the free surface, which supply energy to rolls beneath
Nevertheless, the results should have some relevance ftem. These vortex sheets meet in stagnation points and
situations where the effect of the walls is weak, e.g., innject jets of fluid into the bulk. Interaction between the
large aspect ratio containers. lateral motion of the rolls and the jets is responsible for

We solve the system (1) numerically by using a pseuthe rich dynamic behavior of the system. Figure 1 con-
dospectral Fourier-Chebyshev method. In order to ensur&ins an example of quasiperiodic dynamics governed by
high resolution with a moderate number of modes, wewo processes on different time scales, namely, a short-
have selected the small periodicity length= 2. The time oscillation of the size of the rolls seen in the Nusselt
corresponding critical Marangoni number is Mal101.3.  number plot in Fig. 1(a) and a long-time oscillation of the
We chooseP = 0.1 as a compromise between the moreamplitude of the mean flow shown in Fig. 1(b). Because
realistic value P = 0.01 with only a modest achiev- of the inertial character of the flow, many roll turnovers
able Peclet number Pe and the unrealistic vatue- 1,  are required for a relatively large change in the energy as-
which permits one, however, to obtain Bel. We sociated with the long-time oscillation.
have explored the parameter space up to=Ma.2 X In the turbulent regime we observe complex spatial and
10°, which corresponds to three decades above the otemporal dynamics. Figures 1(a) and 1(b) demonstrate
set of instability. At present, this cannot be achievedhe irregular temporal evolution of Nu arf@l, in contrast
in three-dimensional simulations. In terms of advectiveto the quasiperiodic regime. In spite of the spatiotempo-
time scales, the simulations have been run significantlyal irregularity, reversals of the mean flow on very long
longer than previous Rayleigh-Bénard simulations [3—5](viscous) time scales persist in the flow. This behavior
Table | shows that the present numerical results coveresembles the random rotational motion of the mean flow
several hundred large-scale eddy turnover times.

Our simulations suggest a rough division into two
parameter ranges with significantly different behavior of

the system. This is reminiscent of “soft’ and “hard” ’ ' Ma=60000

turbulence in Rayleigh-Bénard convection [3,4]. For 6 ‘ i Lokl i

Ma < 4 X 10* we find the scaling exponent for Nu on AN LY Ll

Ma to be close to the inertial valug/3 [16]. This inertial 5 " i v Ry ]

or flywheel regime is replaced by a turbulent regime Nu j}“ | i

beyond Ma= 4 X 10*, 4 ]
Let us briefly describe the inertial case before analyz-

ing the turbulent case. For slightly supercritical values of 3 WWWW‘\WWWWW\WWW

the Marangoni number, the flow pattern takes the form of Ma=5000

steady rolls. Upon increasing Ma, the dynamics becomes 2 ) ' '

. ) . ) 0 5 10 15 20

increasingly complex. We first observe laterally traveling

rolls with Q9 # 0. Later, the motion becomes oscillatory. t

Regardless of the temporal dynamics, the inertial flow pat-
tern is characterized by flat vorticity distributions in the (b)
interior of the rolls. Energy input and dissipation in one

TABLE |. Data from turbulent runs. Numerical resolution is Q
512 X 129 collocation points. Total time., in units d?/«; n

denotes the number of roll turns estimated from the tiié¢v

for a single turn with rms velocity.e, Re, and Nu represent

averages ovef,,. ¢ is measured in unitg?/d*.

Ma trun n Re Nu e
4.0 X 10* 13.8 236 684 5.24 562 x 10*
5.0 X 10* 12.9 231 717 530 7.58 x 10* t

6.0 X 10* 17.6 344 781 541 9.75 x 10*
8.0 X 10* 15.9 359 903 5.79 142 X 10° FIG. 1. Temporal evolution of Nu and the mean flgvin
1.0 X 10° 12.7 312 983 563 201 X 10° the quasiperiodiqMa = 5 x 10°) and turbulent cas¢Ma =

12 X 10° 11.8 316 1073 584 259 X 10° t6e>><<t ]104). Notice the slow dynamics i®. [(a) and (b), see

1217



VOLUME 80, NUMBER 6 PHYSICAL REVIEW LETTERS 9 EBRUARY 1998

in Rayleigh-Bénard convection at a low Prandtl numbeher Re= v/P is based on the rms (integral) velocity
[17]. Spatial irregularity and scale separation as charaadefined by
teristic features of turbulent motion are obvious from the 1 ten 1 (L
[ f [ v2(x,z,t)dxdzdt. (4)
0 0 0

snapshots of the vorticity field = d,v, — 9,v, shown 7’ =

in Fig. 2. They also demonstrate the mechanism of the frun L

turbulent dynamics. In the upflow stagnation region ath our dimensionless units, the quantityis given by

the free surface, new vorticity is generated because of = P@” with the same definition of the overbar symbol

the thermocapillary instability. The slow lateral motion &S in Eq. (4). Data from the inertial regime (Ma 10* up

of the rolls drags fluid from this region into a vortex to Ma =3 X 10*) are fitted by the relations

sheet, which amplifies the perturbation and advects iF to- ¢« Re?, Re o« Ma®38, Nu < Ma®®,  (5)

wards the downflow region. In this way, blobs of vortic-

ity form at the free surface, which are injected into thewhereas for the turbulent regim@a = 4 x 10*) we

layer [cf. the central white blob of vorticity at the free obtain

_surf_ace in the qpflovy region in F_ig. 2.(a) and its _positiqn s « Re2. Re o Ma®®3, Nu < Ma®!?.  (6)

in Fig. 2(b)]. Distorting bulk motion disrupts the jet as it

penetrates the layer [Fig. 2(c)]. As a result, vortices ard he turbulent character of the flow changes thscaling

generated, which are swept across the bulk by the larg@n Re. The observed relatien< Re*? is close to the re-

scale circulation. latione « R€ from Kolmogorov's phenomenological the-
Transition to turbulent behavior is reflected in the inte-Ory, indicating a state of developed turbulence. Notice that

gral quantities shown in Fig. 3. Here, the average energ{he specific forme = Re’ arises upon nondimensionaliza-

dissipation rate per unit massis plotted as a function of _tion from & = U?/d in dimensional units [18], where/

the Reynolds number Re, and Re and Nu are shown #ienotes the integral velocity. The more efficient energy

functions of Ma. All three quantities are temporal aver-dissipation in the turbulent regime affects the scaling of

ages from the runs listed in Table I. The Reynolds num-
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FIG. 2. Vorticity snapshots for Ma 6 X 10*. Black and
white corresponds to large negative and positive values. The 3;04 e 12) s

downward jet corresponds to the black and white “strips” Ma

branching off the upper surface. Injection of surface vorticity

into the layer is exemplified by the motion of the central white FIG. 3. Power law scaling of the energy dissipation rager

blob of vorticity at the free surface in (a). [See text for an unit mass vs the Reynolds number Re (a), and Re (b) and Nu
explanation of (a)—(c)]. (c) vs Ma.
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the other quantities on Ma. In the turbulent regime theturbulence, since the two-dimensional Euler equation is
growth of Re and Nu with Ma is slowed down. The pre-regular, implying that the energy cascade to low wave
dictions, numbers is normally incompatible with a statistically
Rex P~2/3Mal/3, Nu o P'/3Mal/3,; 7) s'gati_ona_ry state _[19]. We attribute the finite energy
. - dissipation rate in two-dimensional Bénard-Marangoni
of Pumir and Blumenfeld [8] are not verified by our result ;gnvection to the generation of (singular) vortex sheets
(6). They assume turbulent transport of both momentun}, the inviscid limit. This becomes apparent when

and heat, i.e., they consider the limit of large Re andne Marangoni boundary condition is written in the
Pe. The Kolmogorov scaling of energy dissipation ingimensional formw = y9,7/v.

our simulations indicates turbulent momentum transport. |n symmary, we have reported direct numerical simu-

However, since Pe is smaller by a factor®fcompared |ations of turbulent Bénard-Marangoni convection. We
with Re, the transport of heat may not yet be turbulentfing Kolmogorov scaling for the energy dissipation for
In fact, a modification of the phenomenological mOdelMarangoni numbers betwee# X 10* and 1.2 X 10°.
of [8] substituting heat transport through laminar thermahpe scaling laws for Reynolds and Nusselt numbers differ
boundary Iay_ers for turbulent heat transport gives bettefom the prediction of [8] since heat transport through
agreement with our data, as we now show. laminar boundary layers has not yet been replaced by
As a first step in the derivation, we observe thati,rpulent heat transport.
production and dissipation of kinetic energy balance in \ye are grateful to Ch. Karcher, N. Kukharkin, and
a statistically stationary state. This implies A. Pumir for interesting discussions. Financial support
L Y from the Deutsche Forschungsgemeinschaft under Grants
~Ma f ved;Tdx =P ]0 fo edxdz, (8  No. Th 497/9-1 and No. Th 497/9-2 is acknowledged.
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