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Interference Fragmentation Functions and the Nucleon’s Transversity
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We introduce twist-two quark interference fragmentation functions in helicity density matrix
formalism and study their physical implications. We show how the nucleon’s transversity distribution
can be probed through the final state interaction between two mesons (p1p2, KK, or pK) produced
in the current fragmentation region in deep inelastic scattering on a transversely polarized nucleon.
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The quark transversity distribution in the nucleon is on
of the three fundamental distributions which characteri
the state of quarks in the nucleon at leading twist. Me
surements of the other two have shed considerable lig
upon the quark-gluon substructure of the nucleon. T
transversity distribution measures the probability diffe
ence to find a quark polarized along versus opposite
the polarization of a nucleon polarized transversely to i
direction of motion [1–4]. It is identical to the helicity
difference distribution in the nonrelativistic limit where
rotations and boosts commute. However, we have learn
from gAygV fi 5y3 and the recent measurement of the sp
fraction carried by quarks in the nucleon,S ø 0.2 [5],
that the quarks inside the nucleon cannot be nonrelativ
tic. The difference between the transversity and helici
distributions is a further and more detailed measure of t
relativistic nature of the quarks inside the nucleon.

The transversity distribution measures the correlation
quarks with opposite chirality in the nucleon. Since har
scattering processes in QCD preserve chirality at leadi
twist, transversity is difficult to measure experimentally
For example, it is suppressed likeO smqyQd in totally
inclusive deep inelastic scattering (DIS). Ways hav
been suggested to measure the transversity distributi
These include transversely polarized Drell-Yan [1], twis
three pion production in DIS [2,6], the so-called “Collins
effect” as defined in single particle fragmentation [7], an
polarizedL production in DIS [3,8]. However, each of
these has drawbacks [9].

In this Letter we develop another way to isolate th
quark transversity distribution in the nucleon that i
free from many of these shortcomings. We study sem
inclusive two-meson (e.g.,p1p2, pK, or KK) produc-
tion in the current fragmentation region in deep inelast
scattering on a transversely polarized nucleon. The pos
bility of measuring the quark transversity distribution via
such a process was first suggested by Collins and colla
orators [10] (see also Ref. [6]). Our analysis focuses o
the interferencebetween thes and p wave of the two-
meson system around ther (for pions),Kp (for pK , or
the f (for kaons). We make explicit use of two-meso
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phase shifts to characterize the interference. Such an
terference effect allows the quark’s polarization informa
tion to be carried through$k1 3 $k2 ? $S', where $k1, $k2,
and $S' are the three-momenta ofp1 sKd, p2 sKd, and
the nucleon’s transverse spin, respectively. This effe
is at the leading twist level, and the production rates f
pions and kaons are large in the current fragmentation
gion. However, it would vanish byT invariance in the
absence of final state interactions, or byC invariance if
the two-meson state were an eigenstate ofC parity. Both
suppressions are evaded in ther sp1p2d, KpspKd, and
f sKKd mass regions.

The final state interactions ofpp, pK, and KK are
known in terms of meson-meson phase shifts. From the
phase shifts we know thats- andp-wave production chan-
nels interfere strongly in the mass region around ther,
Kp, andf meson resonances. Since thes and p waves
have oppositeC parity, the interference provides exactl
the charge conjugation mixing necessary. Combining p
turbative QCD, final state interaction theory, and data
the meson-meson phase shifts, we can relate this as
metry to known quantities, the transversity distribution w
seek, and to a new type of fragmentation function that d
scribes thes- andp-wave interference in the processq !

p1p2spK , KKd. Unless this fragmentation is anoma
lously small, the measurement of this asymmetry may
the most promising way to measure the quark transvers
distribution.

Earlier works [7] have explored angular correlation
of the form $k1 3 $k2 ? $S', where $k1 and $k2 are vectors
characterizing the final state in DIS. The simplest examp
would be $k1  $q and $k1  $kp , the momentum of a pion.
These asymmetries, however, require that the final st
interaction phase between the observed hadron(s) and
rest of the hadronic final state must not vanish when t
unobserved states are summed over. We believe this to
unlikely. We utilize a final state phase generated by t
two-meson final state interaction, which is well understoo
theoretically and well measured experimentally.

We consider the semi-inclusive deep inelastic scatteri
process with two-pion final states being detected:e $N' !
© 1998 The American Physical Society
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e0p1p2X. The analysis to follow applies as well topK
or KK production. The nucleon target is transverse
polarized with polarization vectorSm. The electron beam
is unpolarized. The four-momenta of the initial and fina
electron are denoted byk  sE, $kd and k0  sE0, $k0d,
and the nucleon’s momentum isPm. The momentum
of the virtual photon isq  k 2 k0, and Q2  2q2 
24EE0 sin2 uy2, whereu is the electron scattering angle
We adopt the standard variables in DIS,x  Q2y2Pq
and y  PqyPk. The sfsppdI0

l0g and rfsppdI1
l1 g

resonances are produced in the current fragmentat
region with momentumPh and momentum fractionz 
Phqyq2. We recognize that thepp s wave is not
resonant in the vicinity of ther and our analysis does no
depend on a resonance approximation. For simplicity w
refer to the nonresonants wave as the “s”. In their work
on the two-pion system, Collins and Ladinsky [11] mad
the unphysical assumption of a narrows-wave resonance
interfering with a (real) continuump wave, neither of
which appears inpp-scattering data.

The invariant squared mass of the two-pion system
m2  sk1 1 k2d2, with k1 andk2 the momentum ofp1

and p2, respectively. The decay polar angle in the re
frame of the two-meson system is denoted byQ, and the
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l

.
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azimuthal anglef is defined as the angle of the normal o
two-pion plane with respect to the polarization vector$S'

of the nucleon, cosf  $k1 3 $k2 ? $S'yj $k1 3 $k2j j $S'j.
This is the analog of the “Collins angle” defined by th
p1p2 system [7].

To simplify our analysis we make a collinear approx
mation, i.e.,u ø 0, in referring the fragmentation coor
dinate system to the axis defined by the incident elect
(the complete analysis will be published elsewhere [12
At SLAC, HERMES, and COMPASS energies, a typic
value foru is less than 0.1. Complexities in the analys
of fragmentation turn out to be proportional to sin2 u and
can be ignored at fixed target facilities of interest. In th
approximation the production of two pions can be view
as a collinear process with the electron beam defining
commonê3 axis. Also we take$S' along theê1 axis.

Since we are only interested in a result at the lead
twist, we follow the helicity density matrix formalism
developed in Refs. [8,13], in which all spin dependen
is summarized in adouble helicity density matrix. We
factor the process at hand into basic ingredients: theN !

q distribution function, the hard partoniceq ! e0q0 cross
section, theq ! ss, rd fragmentation, and the deca
ss, rd ! pp, all as density matrices in helicity basis:
∑
d6s

dxdydzdm2d cosQdf

∏
H 0H

 F
h1h0

1
H 0H

∑
d2sseq ! e0q0d

dxdy

∏h2h0
2

h0
1h1

∑
d2M̂

dzdm2

∏H1H 0
1

h0
2h2

∑
d2D

d cosQdf

∏
H 0

1H1

, (1)
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wherehish0
id and HsH 0d are indices labeling the helicity

states of quark and nucleon, andH1sH 0
1d labeling the

helicity state of the resonancess, rd; see Fig. 1. In order
to incorporate the final state interaction, we have separa
the q ! p1p2 fragmentation process into two steps
First, the quark fragments into the resonancess, rd, then
the resonance decays into two pions, as shown at the
part of Fig. 1.

We first discuss two-meson fragmentation, first exam
ined in Ref. [10]. Here we introduce only those piece

FIG. 1. Hard scattering diagram for two-meson production
the current fragmentation region of electron scattering fro
a target nucleon. Helicity density matrix labels are show
explicitly.
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necessary to describes-p interference inp1p2 produc-
tion. A full account of these fragmentation functions wil
be given in Ref. [12]. A two-meson fragmentation func
tion can be defined by a natural generalization of the sing
particle case. Using the light-cone formalism of Collin
and Soper [14], the following replacement suffices,

jhXlout outkhXj ! jp1p2Xlout outkp1p2Xj . (2)

The resulting two-meson fragmentation function depen
on the momentum fraction of each pion,z1, z2, the pp

invariant mass,m, and the anglesQ and f. The sub-
script “out” places outgoing wave boundary condition
on the ppX state. Two types of final state interac-
tions can generate a nontrivial phase: (i) those betwe
the two pions, and (ii) those between the pions and th
hadronic stateX. We ignore the latter because we ex
pect the phase to average to zero when the sum onX
is performed—jp1p2Xlout ! jsp1p2doutXl. Further-
more, if the two-pion system is well approximated by
single resonance, then the resonance phase cancels in
product jsp1p2doutXl ksp1p2doutXj. This leaves only
the interference between two partial waves as a potent
source of an asymmetry. The final state phase of the tw
pion system is determined by thepp T -matrix [15]. We
1167
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separate out the phase for later consideration and ana
the (real)r-s interference fragmentation function as if th
two particles were stable.

The s-p interference fragmentation function describe
the emission of arssd with helicity H1 from a quark
of helicity h2, followed by absorption ofssrd, with
helicity H 0

1 forming a quark of helicityh0
2. Conservation

of angular momentum along thêe3 axis requires

H1 1 h0
2  H 0

1 1 h2 . (3)

Parity and time reversal restrict the number of indepe
dent components ofM̂ :

M̂
spspsd
H 0

1H1,h2h0
2

 M̂
spspsd
2H 0

12H1,2h22h0
2

sparityd , (4)

M̂
sp
H 0

1H1,h2h0
2

 M̂
ps
H1H 0

1,h0
2h2

sT -reversald . (5)

Note that Eq. (5) holds only after theT reversal violating
final state interaction between two pions is separated o
1168
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After these symmetry restrictions, only two independen
components remain,

M̂
sp
00,11 ~ q̂I , M̂

sp
01,12 ~ dq̂I , (6)

and they can be identified with two novel interference
fragmentation functions,̂qI , dq̂I , where the subscriptI
stands for interference. Here, to preserve clarity, the fla
vor, Q2, and z have been suppressed. The helicity6

1
2

states of quarks are denoted6, respectively. Hermitic-
ity and time reversal invariance guaranteeq̂I and dq̂I

are real. From Eq. (6) it is clear that the interference frag
mentation function,dq̂I , is associated with quark helicity
flip and is therefore chiral-odd. It is this feature that en
ables us to access the chiral-odd quark transversity dist
bution in DIS.

Encoding this information into a double density matrix
notation, we have
d2M̂

dzdm2
 D0sm2d hI ≠ h̄0q̂I szd 1 ss1 ≠ h̄2 1 s2 ≠ h̄1ddq̂I szdjDp

1sm2d

1 D1sm2d hI ≠ h0q̂I szd 1 ss2 ≠ h1 1 s1 ≠ h2ddq̂I szdjDp
0sm2d , (7)
for

i-

-
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-
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e

where s6 ; ss1 6 is2dy2 with hsij the usual Pauli
matrices. Theh’s are 4 3 4 matrices inss, rd helicity
space with nonzero elements only in the first colum
and theh̄’s are the transpose matricessh̄0  h

T
0 , h̄1 

hT
2, h̄2  hT

1d, with the first rowss0, 0, 1, 0d, s0, 0, 0, 1d,
ands0, 1, 0, 0d for h̄0, h̄1, andh̄2, respectively.

The final state interactions between the two pions a
included explicitly in

D0sm2d  2i sind0eid0, D1sm2d  2i sind1eid1, (8)
where d0 and d1 are the strong interactionpp phase
shifts. Here we have suppressed them2 dependence of the
phase shifts for simplicity. The decay process,ss, rd !

pp , can be easily calculated and encoded into the helic
matrix formalism. The result for the interference part is

d2D

d cosQdf


p
6

8p2m
sinQfie2ifsh2 2 h̄2d

1 ieifsh1 2 h̄1d

2
p

2 cotQsh̄0 1 h0dg .

(9)
n,
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Here we have adopted the customary conventions
the r polarization vectors,$e6  7sê1 6 iê2dy

p
2 and

$e0  ê3 in its rest frame withe’s being the unit vectors.
In the double density matrix notation, the quark distr

bution functionF can be expressed as [8]

F 
1
2

qsxdI ≠ I 1
1
2

Dqsxds3 ≠ s3

1
1
2

dqsxd ss1 ≠ s2 1 s2 ≠ s1d , (10)

where the first matrix in the direct product is in the nu
cleon helicity space and the second in the quark hel
ity space. Hereq, Dq, and dq are the spin average,
helicity difference, and transversity distribution func
tions, respectively, and their dependence onQ2 has been
suppressed.

The hard partonic process of interest here is essentia
the forward virtual Compton scattering as shown in th
middle of Fig. 1. For anunpolarizedelectron beam, the
resulting cross section is [8]
hal

tation
d2sseq ! e0q0d
dxdy


e4e2

q

8pQ2

∑
1 1 s1 2 yd2

2y
sI ≠ I 1 s3 ≠ s3d 1

2s1 2 yd
y

ss1 ≠ s2 1 s2 ≠ s1d
∏

, (11)

in the collinear approximation. Hereeq is the charge fraction carried by a quark. We have integrated out the azimut
angle of the scattering plane.

Combining all the ingredients together, and integrating overQ to eliminate theq̂I dependence, we obtain the
transversity dependent part of the cross section for the production of two pions (kaons) in the current fragmen
region for unpolarized electrons incident on a transversely polarized nucleon as follows:

d5s'

dxdydzdm2df
 2

e4

64p2Q2m
1 2 y

y

p
6 cosf sind0 sind1 sinsd0 2 d1d

X
a

e2
adqasxddq̂a

I szd . (12)
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Here the sum overa covers all quark and antiquark flavors.
An asymmetry is obtained by dividing out the polarization independent cross section,

A'Á ;
ds' 2 dsÁ

ds' 1 dsÁ

 2
p

4

p
6 s1 2 yd

1 1 s1 2 yd2
cosf sind0 sind1 sinsd0 2 d1d

P
a e2

adqasxddq̂a
I szdP

a e2
aqasxd fsin2 d0q̂a

0 szd 1 sin2 d1q̂a
1 szdg

, (13)
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where q̂0 and q̂1 are spin-average fragmentation
functions for the s and r resonances, respectively
The crucial “figure of merit” for this asymmetry,
sind0 sind1 sinsd0 2 d1d, is shown in Fig. 2. This
asymmetry can be measured either by flipping the targ
transverse spin or by binning events according to th
sign of the crucial azimuthal anglef. Note that this
asymmetry only requires a transversely polarized nucle
target, but not a polarized electron beam.

The flavor content of the asymmetryA'Á can be
revealed by using isospin symmetry and charge co
jugation restrictions. Forp1p2 production, isospin
symmetry gives dûI  2dd̂I and dŝI  0. Charge
conjugation impliesdq̂a

I  2d ˆ̄qa
I . Thus there is only

one independent interference fragmentation function f
p1p2 production, and it may be factored out o
the asymmetry,

P
a e2

adqadq̂a
I  f4y9sdu 2 dūd 2

1y9sdd 2 dd̄dgdûI . Similar application of isospin
symmetry and charge conjugation to ther and s frag-
mentation functions that appear in the denominator
Eq. (13) leads to a reduction in the number of independe
functions:ûi  d̂i  ˆ̄ui  ˆ̄di and ŝi  ˆ̄si for i  h0, 1j.
For other systems the situation is more complicated d
to the relaxation of Bose symmetry restrictions.

Finally, a few comments can be made about our resul
First, the final state phase generated by thes-p interfer-

FIG. 2. The factor, sind0 sind1 sinsd0 2 d1d, as a function of
the invariant massm of the two-pion system. The data onpp
phase shifts are taken from Ref. [17].
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ence is crucial to this analysis. If the data are not ke
differential in enough kinematic variables, the effect wi
almost certainly average to zero. We are particularly co
cerned about the two-meson invariant mass,m, where we
can see explicitly that the interference averages to zero o
the r as shown in Fig. 2. Second, the transversity d
tribution is multiplied by the fragmentation functiondq̂I .
Note that the transversity distributionalways appears in
a product of two soft QCD functions due to its chira
odd nature. In order to disentangle the transversity dis
bution from the asymmetry, one may invoke the proce
e1e2 ! sp1p2Xd sp1p2Xd to measuredq̂I [16], or
use QCD inspired models to estimate it [12].
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