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Large ensembles of complete spectra of the Euclidean Dirac operator for staggered fermions are
calculated for SU(2) lattice gauge theory. The accumulation of eigenvalues near zero is analyzed as a
signal of chiral symmetry breaking and compared with parameter-free predictions from chiral random-
matrix theory. Excellent agreement for the distribution of the smallest eigenvalue and the microscopic
spectral density is found. This provides direct evidence for the conjecture that these quantities are
universal functions. [S0031-9007(98)05378-2]
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Hadronic properties, such as the lightness of the pioithe average spectral density is nonuniversal and requires
masses and the absence of parity doublets, stronglpecific knowledge of the dynamics of the system. In
indicate that chiral symmetry is broken spontaneouslythis letter we investigate the question whether a similar
In QCD, a great deal of insight in such nonperturbativeseparation of scales takes place in QCD. Does the
phenomena has been obtained from extensive lattice QCaisorder of lattice QCD gauge field configurations result
simulations [1,2]. This did not go without a significant in universal fluctuations of the small Dirac eigenvalues?
amount of effort. One of the difficulties is that the order According to the Banks-Casher relation, the low-lying
parameter of the chiral phase transitigg;/), can be Dirac eigenvalues are spaced agVv for (Jy) # 0.
obtained only after a complicated limiting procedure: theRecent work by Leutwyler and Smilga [6] shows that
thermodynamic limit, the chiral limit, and the continuum this part of the spectrum is related to the pattern of chiral
limit. In addition, in the chiral limit it is extremely costly symmetry breaking by means of a class of sum rules for
to take into account the effect of the fermion determinantthe inverse Dirac eigenvalues. It is natural to magnify
Since the fermion determinant can be expressed as the spectrum nean = 0 by a factor of V. This leads
product over the Dirac eigenvalues, this alone warranto the introduction of the microscopic spectral density [7]
a detailed study of the QCD Dirac spectrum. Moreoverdefined by

() is directly related to the QCD Dirac spectrum ps(z) = lim Lp(i) )
through the Banks-Casher relation [3], ’ Voo VI TV )T
@) = lim lim = p(0). (1) WhereX is the absolute value ofsy/). Based on the
m—0 V- V analysis of the Leutwyler-Smilga sum rules, it was con-

Here,m is the quark masg/ is the volume of space-time, jectured [7] that this distribution is universal and de-
andp(A) = &, 8(A — A,)) is the eigenvalue density of termined only by the global symmetries of the QCD
the Euclidean Dirac operatail) = iy,d, + y,A,, av-  partition function, the number of flavors, and the topo-
eraged over gauge field configurations. We observe thdbgical charge. If that is the case it can be obtained from
the average position of the smallest eigenvalues is detea much simpler theory with only the global symmetries
mined by the chiral condensate. In this Letter we focusas input. Such a theory is chiral RMT which will be dis-
on fluctuations of the smallest eigenvalues about their aveussed below. Whether or not QCD is in this universality
erage position. It should be clear that such fluctuationglass is a dynamical question that can be answered only by
affect the fermion determinant and are important for thdattice QCD simulations. The investigation of this ques-
understanding of finite size effects [4]. The hope is thation is the main purpose of this Letter. At this moment it
they are given by universal functions which can be ob-can be addressed only on relatively small lattices where
tained analytically. This analytical information could then our results are consistent with zero topological charge.
be used to facilitate extrapolations to the thermodynamidhe pertinent question of what happens in the continuum
and chiral limits. limit has to be postponed to future work. In this limit

A similar situation arises in mesoscopic physics [5]. Inwe expect zero modes to become importapf(z) is then
these studies, it was shown that for a sufficient amoundifferent in different sectors of topological charge. How-
of disorder, spectral correlations are universal and caever, on present day lattices with staggered fermions there
be obtained from a random-matrix theory (RMT) with seems to be no evidence of a “zero-mode zone” [8], and
only the basic symmetries included. On the other handthe situation is controversial at best.
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There are already several pieces of evidence supportirgye periodic for the gauge fields and periodic in space and
the conjecture thab, is universal: (i) The moments gf;,  antiperiodic in Euclidean time for the fermions. In this
generate the Leutwyler-Smilga sum rules [9]. fi)isin-  work, we study only the quenched approximation using a
sensitive to the probability distribution of the random ma-hybrid Monte Carlo algorithm [22]. This made it possible
trix [10,11]. (iii) Lattice data for the valence quark massto generate a large number of independent configurations
dependence of the chiral condensate could be understodithdicated in the figures). The analysis of unquenched
using the analytical expression fpr, [12,13]. (iv) The data with four dynamical flavors is in progress.
functional form of p; does not change at finite tempera- In SU(2) with staggered fermions, every eigenvalue of
ture [14]. (v) The analytical result fau, is found in the iD is twofold degenerate due to a global charge conju-
Hofstadter model for universal conductance fluctuationgiation symmetry. In addition, the squared Dirac operator
[15]. (vi) For an instanton liquicp, shows good agree- —D? couples only even to even and odd to odd lattice sites,
ment with the random-matrix result [16]. However, a di- respectively. Thus—D? hasV /2 distinct eigenvalues.
rect demonstration for lattice QCD was missing. We use the Cullum-Willoughby version of the Lanczos al-

An analysis of Dirac spectra on the lattice was per-gorithm [23] to compute the complete eigenvalue spectrum
formed in Ref. [17] where it was shown that the spectralof the sparse Hermitian matrix D2 in order to avoid nu-
fluctuations in the bulk of the spectrum on the scale of thanerical uncertainties for the low-lying eigenvalues. There
mean level spacing are universal and described by RMTexists an analytical sum rule;(—D?) = 4V, for the dis-
This showed that the eigenvalues of the Dirac operatotinct eigenvalues of D? [24]. We have checked that this
are strongly correlated. Only a few configurations weresum rule is satisfied by our data, the largest relative de-
available in this study, but spectral ergodicity allowed usviation was~10"8. We have also made a detailed study
to replace the ensemble average by a spectral average. determine the optimal acceptance rates and trajectory
However, spectral averaging is not possible forsince lengths [25]. The integrated autocorrelation times are in
only the first few eigenvalues contribute. Therefore, athe range of 1to 4. The chiral condensate was obtained by
large number of configurations is essential. fitting the spectral density and extractipg) and is given

We briefly summarize the main ingredients of chiralin Table | below.

RMT. In a random-matrix model, the matrix elements of The overall spectral density of the Dirac operator
the operator under consideration are replaced by the eleannot be obtained in a random-matrix model since it is
ments of a random matrix with suitable symmetry prop-not a universal function. The lattice result fpi(A) is
erties. Here, the operator is the Euclidean Dirac operatadisplayed in Fig. 1 for@ = 2.0, V = 10* and 8 = 2.4,

iD which is Hermitian. Becausgs anticommutes with V = 16*, respectively. Note the strong decreaséi/iy)

iD the eigenvalues occur in pairsA. In a chiral basis, (in lattice units) forg = 2.4; cf. Eq. (1) and Table 1.

the random-matrix model has the structure [7] We are particularly interested in the region of small
. W eigenvalues to check the predictions from chiral RMT. Ac-
iD + im — ["};’fr im}’ cording to Ref. [18], staggered fermions in SU(2) have

the symmetries of the chGSE. Analytical expressions can
where W is a matrix whose entries are independentlybe obtained in the framework of RMT for the micro-
distributed random numbers. In full QCD wittvy  scopic spectral density and the distribution of the small-
flavors, the weight function used in averaging containgest eigenvalue by slight modifications of results computed
the gluonic action in the form exp S,;) and N, fermion  for Laguerre symplectic ensembles [20,26]. Incorporating
determinants. In RMT, the gluonic part of the weightthe chiral structure of the Dirac operator, we obtain from
function is replaced by a Gaussian distribution of theRef. [20]
random matrixW. The symmetries o are determined 1 1
by the antiunitary symmetries of the Dirac operator.Ps(z) = 2Z2f du uz] dv[Jaa-1Quvz)Ja,(2uz)
Depending on the number of colors and the representation 0 0
of the fermions the matri¥¥ can be real, complex, or = vJ4a-1(2uz)J442uvz)]
quaternion real [18]. The corresponding random-matrix 3)
ensembles are called chiral Gaussian orthogonal (chGOE),
unitary (chGUE), and symplectic (chGSE) ensemble;TABLE I. Chiral condensate and a comparison of lattice data
respectively. The microscopic spectral density has beeand analytical predictions for the Leutwyler-Smilga sum rule
computed analytically for all three ensembles [9,19,20]. for A,2.

We h.ave performed numencal simulations of lattice B L () &, A2/ V2 Gy /2
QCD with staggered fermions and gauge group SU(2}
for couplings 8 = 4/g%> = 2.0, 2.2, and2.4 on lattices 20 8 0.1228(25) 820(20) X 107> 7.54(31) X 107*
of sizeV = L* with L. = 8, 10, and16. This range of 2.0 10 0.1247(22) 7.97(30) X 10:2 7.78(27) X 10:2
lattice parameters covers the crossover region from stron 2 12 8'8322(31(%) é'g%?ii § }8,; ég;gig i }8,;
to weak coupling of SU(2) [21]. The boundary conditions= - - -
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0.2 free RMT predictions is impressive. Note that the RMT
AU L results were derived in the limiV — . Clearly, the
p(\) | g;f':;L:l\‘i agreement improves as the physical volume increases, i.e.,
— L k- J with larger lattice size and smallgg. From the results
v 1 4 for B = 2.0 we observe that the agreement with RMT
_ improves with increasing lattice size while the value of
$=2.0, L=10 . .
1418 conf. 4 the_condensate remains the same. This suggests that a
. similar improvement will occur fog = 2.2 andB = 2.4.
. These values are just below th& value above which
. () approaches zero, where the above RMT results are
L inapplicable, and an increased sensitivity to the size of
0 1 2 3 4 5} the lattice is expected. Sind&Ami,) for these couplings
A agrees with the RMT distribution for zero topological
FIG. 1. Spectral density of the lattice Dirac operator forcharge we expect that the discrepancy fgfz) is not
B = 2.0 and2.4. Only positive eigenvalues are plotted. due to a superposition of configurations with different
topological charge. We hope that future work will clarify

with 4a = Ny + 2» + 1, where N, is the number of this issue. - _ o .
massless flavors andis the topological charge. For our Related quantities testing similar properties are the
quenched datata = 1 since» = 0 as explained in the higher-order spectral correlation functions, in particular,
introduction. According to Eq. (2), lattice data fpr(z)  the two-point fu_n_c.ti_on which enters in the qomputati_on of
are constructed from the numerical eigenvalue densitpcalar susceptibilities. The-point correlation function
using a scald (¢4). This scale is determined by the data; Rn(x1....,x,) is defined as the probability density of
hence the random-matrix predictions are parameter-freéinding a level (regardless of labeling) around each of
Similarly, the distribution of the smallest eigenvalue forthe points x;,...,x,. The two-level cluster function
Ny = v = 0 follows from Ref. [26], T>(x,y), which contains only the nontrivial correlations,
is defined byT,(x,y) = —Rs(x,y) + Ri(x)R{(y), i.e.,
P(Ain) = \/Ec(c/\min)3/213/z(c)\min)e_%(M‘“‘")z, (4) the disconnected part is subtracted. For the chGUE,
2 there are analytical arguments [27] that the microscopic
wherec = V(i) is the same scale as above. In Fig. 2correlations are universal, and the same is expected for
we have plotted the lattice results fpt(z) and P(Anim)  the chGSE. In this case, the predictions from RMT can
together with the analytical results of Egs. (3) and (4)again be obtained from the results of Ref. [20], but we do
for four different combinations of8 and lattice size. not write down the explicit expressions here. In Fig. 3,
The agreement between lattice data and the parametere have plotted data fop,(x,y) for 8 = 2.0 on an
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FIG. 2. Microscopic spectral density (upper row) and distribution of the smallest eigenvalue (lower row) of the Dirac operator for
different lattice parameters. From left to right the valuegaodre 2.0, 2.0, 2.2, and 2.4. The histograms represent lattice data; the
dashed curves are predictions from chiral RMT with = » = 0.
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