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We present a new theoretical treatment of the collective excitation spectrum of a two-species Bose-
Einstein condensate confined in a magnetic trap. We show that the interspecies interaction significantly
modifies the excitation spectrum and gives rise to a rich set of new phenomena. We identify a novel
metastable state of the double condensate and show that under external perturbation there can be a
macroscopic quantum transition between this metastable state and the true ground state of the double
condensate system. [S0031-9007(97)05175-2]

PACS numbers: 03.75.Fi, 05.30.Jp

Since the first observation of Bose-Einstein condensaBogoliubov-Hartree theory [7,8] have shown excellent
tion (BEC) in a dilute alkali vapor [1], substantial effort agreement with many of the experimental results. As
has been made to study the properties of these weakly i natural starting point to our TBEC investigation, we
teracting trapped degenerate Bose gases. As theory ahdve numerically calculated the excitation spectra of
experiment have advanced, a new rich phenomenologg TBEC confined in an isotropic harmonic trap. We
has appeared in which new conditions arise, conditionfind that the spectra are significantly modified by the
which are not accessible in other BEC systems. Oneoupling between different species: the mode frequencies
of the most stunning of these has been the recent exf the individual condensates are shifted and imaginary
perimental demonstration of a condensate mixture comfrequency (i.e., unstable) modes are found to exist for
posed of two spin states &Rb [2]. This observation has large repulsive interspecies interactions. Next we have
prompted significant interest in the physics of a new classarried out a nonlinear response analysis and discovered
of guantum fluids: the two-species Bose Einstein condenthat the interspecies interaction gives rise to excitation
sate (TBEC). Fundamental issues distinguish the trappemiodes of different symmetry analogous to the modes
TBEC from the single species BEC, and at the heart obf two coupled pendulums and that harmonic generation
many of these issues is the presence of interspecies intezan occur. Our analysis allows us to demonstrate the
actions and the resulting coupling of the two condensategxistence of novel metastable states of the TBEC. We
Previous theoretical treatments have shown that due tshow that under sufficiently strong external perturbation
interspecies interactions, the ground state density distribuhis metastable state will jump to a different more
tion of a TBEC can display novel structures that do notstable state, a phenomenon that may be regarded as a
exist in a one-species condensate [3,4]. In support of thisnacroscopic quantum transition.
in the recent’Rb experiments, the measured density pro- At zero temperature, the self-consistent nonlinear
files of the two-spin state condensates indicated that ther®@chrddinger equations, known as Gross-Pitaevskii equa-
were observable consequences of the interactions betwetans (GPE's), for a TBEC may be written as [3—5]

the two condensates. However, due to gravitational ef- o (r,t) )
fects, the trap centers of each of the condensates were ih ot [Ty + Vi + NiUn|
separated and a detailed theoretical analysis of the data )
was needed before the condensate coupling effect could + NaoUnliol T, (1)
be placed on firm grounds [5]. an(r, 1) 5

To better understand the properties of the TBEC, ih ———— = [Ty + V2 + MUl

. . . at
important questions remain to be answered. For example:

How do the interactions affect the excitation spectra and + N1 Uplyn P12, (1b)
stability of the condensates? How will the condensatesvherey;(r, ) denotes the macroscopic condensate wave
evolve under external perturbations? These questions afenction for species, with r being the radial coordi-
the subject of the present Letter. nate. N;, m;, and w; are particle number, mass, and
One of the fundamental properties of the confinedrap frequency, respectively; = —h2V?/2m; andV; =
condensate lies in the nature of the collective excitationsn; w?r?/2 are the respective kinetic and potential en-
For single species alkali BEC, two research groupsergy operators. The interaction between particles is de-
have experimentally measured some of the excitatioscribed by a self-interaction tery; = 47 /i%a;/m; and a
frequencies [6], and theoretical calculations based on th&rm that corresponds to the interaction between different
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specied > = 2xh’ay/[mima/(m; + my)], wherea; is  numbersz and! [7]. A sufficient condition forw, to be
the scattering length of speciésand a;, that between real is that matrixM is semipositive [12]. Our numerical
species 1 and 2. The time-independent GPE’s are olstudies show that, if all the other parameters are fidéd,
tained by replacing the left-hand sides of Eqgs. (1) withis semipositive for a finite range of interspecies scattering
wii(r) (i = 1,2), with u; being the chemical potential. length a;;. This range characterizes the stable region
To calculate the excitation frequencies within theof the TBEC [13]. Figure 1 shows the first two mode
Bogoliubov approximation [9], we first derive the Bo- frequencies forl = 1 (for convenience, assuming both
goliubov equations using the linear response methodpecies have the same angular momentum) as functions
described by Rupreclet al. [10]. Let the time-dependent of aj;. In our calculations, we take Rb as species 1

wave functionsy;(r, ) take the following form: and Na as species 2, with scattering lengths taken as 6
N; i(r, 1) = e LN i () + ui(r)e 1! and 3 nm, respectively. For the trap, we assume—=
\/_¢ [\/—:ﬂ( ior ) 27 X 160 Hz andw, = 27 X 310 Hz. Ata;, = 0 (for

+ v (r)e'']. (2)  two uncoupled condensates), the values of these two mode

After inserting Eq. (2) into Egs. (1), retaining only terms frequencies do not depend on particle numbers. In fact,
up to first order inu;(r) and v;(r), and equating like they are exactly equal to the respective trap frequencies
powers ofe~®’ we derive the equations far;(r) and for Rb and Na (in our dimensionless units, they are
v;(r) which can be cast into a matrix form: 1 and 1.945, respectively). In these modes, the atoms
Mb)= w,m b, 3) in each condensa}te §Iosh back and forth as a W.hole,
such that the motion is not affected by the interactions
between the atoms. Interspecies interactions significantly
alter the mode spectra. For negativg —which means
there exists an attractive interaction between Rb and Na—

where ¢, = (u1y, usp, viy, v2))! is the mode function
of the TBEC with mode frequency,. The matrices\
andn have the following forms:

280 i NU it i both frequencies shift upward. This can be understood as
b HO 7 NoUsih? each condepsate sees a somewhat tighter trap due to the
M = N U2 i HO i , extra attractive potential imposed by the other condensate.
iiad ) . 2 For positivea;,, the opposite is true: mode frequencies
v MUz v H decrease as;, increases. At a critical value ofi,, the
10 0 0 (4)  n = 0 mode frequency reaches zero. Beyond that critical
01 0 0 value, the frequency becomes imaginary (in this region,
T~ 10 0 =1 o |’ matrix M has negative eigenvalues). Imaginary excitation
00 0 -1 frequencies mean that fluctuations above the condensate
can grow exponentially in time. Thus, a large repulsive
where U = /NN Upippr, and HO =T; + V; — interaction between the two species can induce instability

wi + 2N Ui + N,-Ulzz//.,-z (i,j = 1,2;i # j). Here inthe system [14].

¢1(r) and ¢, (r) are ground state wave functions which, In Fig. 2, we illustrate the first three isotropic breathing
without loss of generality, are assumed to be realmodes (corresponding fo= 0, excluding the zero mode)
Applying the finite difference approximation [4], the as functions ofa;;. Unlike thel = 1 modes shown in
problem of computing the normal modes is cast in theFig. 1, these modes are not monotonic functions: gf
form of a generalized-eigenvalue problem, which can bénstead, they reach minima at a positive value:pf and
solved using standard numerical software packages. Aever become imaginary. As indicated in Fig. 2, for posi-
distinguishing feature of our approach is that we includdive a,,, the lowest lying mode is an out-of-phase mode in
the full coupled Hamiltonian [see Egs. (1)] in our solution which the Rb and Na density distributions oscillate with a
without making the Thomas-Fermi approximation (TFA) 180° phase difference. This can be intuitively understood
(i.e., without neglecting the kinetic terms). This fact is by realizing that for a repulsive interaction, the excitation
important since the widely used TFA [3-5,11] has been
shown to be quantitatively unreliable in the treatment of
the TBEC [5].

As in the case of a one-species condensate, the mode
frequencies occur in equal magnitude pairs of opposite
sign in our solutions. This can be understood because
if wy— —w, and if u;, and v;, are exchanged, then
Eq. (3) remains unchanged. The zero mode is twofold
degenerate, with mode functiofug, u, vi9, v29) =
(1, 0, =4y, 0) or (0, ¥, 0, —¢f»), and a corresponding
frequencyw, = 0.

In a 3D spherical potential, the excitation frequenciesFiG. 1. Spectra for the first twb = 1 modes as functions of
w, depend on the radial and angular momentum quantuma;;. The units for frequency i, .
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5, 6 ' ‘ mode and in-phase mode frequency, respectively. Figures
§ 5 w ] 3(d)—3(c) display the respective Fourier spectra of the
% Rb density fluctuations depicted in 3(a)-3(c). For an
£ Y n=21=0 ) off-resonance perturbation [Fig. 3(athe intensity of the

§ 3t wexH | spectrum is increased by a factor of 5 in this plot],
§ Sl ”w i we see a weak response at the driving frequefity

r.% 1 e and the first few normal mode frequencies. For the on-

5 - o resonance perturbation [Figs. 3(land 3(¢)], not only
au (nm) is the response &) much stronger, but the oscillation
FIG. 2. First three nonzero isotropi¢ € 0) modes as func- Spectrum also shows higher harmonics [15]. The marked
tions of a;,. Diamonds: in-phase mode; Stars: out-of-phasedifference between the off- and on-resonance, as well
mode. Solid lines are guides to eyes. Hafe= N, = 10%. as the in-phase and out-of-phase response allows us to
identify the resonance frequencies and the mode types.
Another feature of this nonlinear response analysis is
at it can be used to investigate the mechanical stability
modes include in-phase motion. Similarly, we find thatmc th_e wave fqnctlons. Fl_gurqs 4(a) and 4(b) d|1splay two
X d .. possible solutions to the time-independent GPE’s. In both
an in-phase mode becomes the lowest lying modeif .
; . . : solutions the two condensates have become segregated
is negative since the time averaged overlap of the conden- . . i
) _— S into a central core dominated by one species with an
sates is maximized in this mode. . .
. . . uter shell of the second species, the difference between
The values of the isotropic mode frequencies an . . . .
e . _the two being which atom comprises the core and which
the mode type (whether it is an out-of-phase or in-

phase mode) are verified by a nonlinear response analysf[frgmpnses the shell. In Figs. 4fand 4(b) we illustrate

[10]. We introduce a small sinusoidal modulation to the e respective time evolution of the initial wave functions
s ) . . plotted in 4(a) and 4(b) under external drive. In both
trapping potential with modulation frequenéy, and let : . :
- : : . cases the trapping potentials are modulated with the same
the initial wave functions be the solutions to the time-¢ - suency and amolitude. Figure #(ashows a typi-
independent GPE’s. The wave functions at a later time q y P N9 P

. ; . i . ?al off-resonance response expected for a stable ground
are obtained by direct integration of the tIme'dependenstate—the condensates oscillate around their equilibrium
GPE’s [Egs. (1)] using the Crank-Nicholson method. d

Figures 3(a)—3(c) show the density for both species a§tate. On the other hand,_as can be seen ir) Afie )
. . ; State represented by 4(b) is not unconditionally stable:

the center of the trap as a function of time. Figure 3(a) e : e
. - “under a sufficiently strong external perturbation the initial

represents an off-resonant modulation. The fluctuations

remain small as compared to Figs. 3(b) and 3(c) Wherstate (b) makes a sudden jump to the other state (a).
. P gs. A calculation of the expectation value of Hamiltonian
the modulation frequency) equals to an out-of-phase

confirms that the energy of state (a) is, in fact, lower
than that of (b). We point out that the jump from state
(b) to (a) will not occur if the perturbation is not strong
@ Rb @) ] 20 enough. Hence, state (b) represents a metastable state
of the TBEC. These macroscopic metastable states arise

|
o

mode energy is lowered when the time averaged overlaﬁ1
of the condensates is minimized. Naturally, higher lying

L9 KA © 1
10

example, if the Na condensate is formed prior to the

b Na x5 ° from the interspecies interactions and hence are unique
bt — .
g Q=1.275 e §  for the multicomponent condensates. We suggest that the
8" \ ®) 120 § jump between such metastable and stable states may be
gwow\{}/\/\/wv\ <& regarded as a macroscopic quantum transition, a novel
2 .l Na {10 ‘g_ phenomenon whose detailed dynamics is currently under
5 Q=3.195 &  investigation. Our calculations confirm that it is possible
N Y % to generate such a metastable state experimentally. For
g 2
o &

N 110 Rb condensate such that the Rb atoms condense in the
° 03881 presence of the preexisting, repulsive Na condensate core,
5 30 o BT = ° then the Rb will condense into the metastable shell.

t

In summary, we have used a nonlinear response analy-
FIG. 3. (a)—(c) Density at the center of the trap as functionsSiS and an extended Bogoliubov-Hartree theory to in-
of time as the trap frequency modulated at frequety  vestigate the collective excitation spectra for a trapped
(a)—(c) Fourier spectrum of the Rb density fluctuation. The TBEC. We have shown that the coupling between the
component atw =0 has been excluded.  Arows indicate .,njensates has a dramatic effect on the excitation spec-
the positions of the driving frequenc§). The units for . . .
density and time are2m;w,/A)*2 and 1/w,, respectively. trum and can give rise to a nov_el metastable gtate. .FI-
Here N, = N, = 103, a;, = 3.6 nm. The first three nonzero Nally, we have found that imaginary frequencies exist
isotropic excitation frequencies are 1.575, 3.195, and 3.881. in nonisotropic modes for strong repulsive interspecies
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FIG. 4. (a),(b) Two sets of solutions to the time-independent GPE’s. (a) Represents the ground state; (b) represents a metastable
state. (9,(b") Density at the center of the trap as functions of time under an off-resonance modulation of the trapping potential.
The unit for length iS(/i/2m;w;)"/2. ParametersV, = N, = 10°, a;, = 9.6 nm.
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