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Collective Excitations, Metastability, and Nonlinear Response of a Trapped
Two-Species Bose-Einstein Condensate
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We present a new theoretical treatment of the collective excitation spectrum of a two-species Bose-
Einstein condensate confined in a magnetic trap. We show that the interspecies interaction significantly
modifies the excitation spectrum and gives rise to a rich set of new phenomena. We identify a novel
metastable state of the double condensate and show that under external perturbation there can be a
macroscopic quantum transition between this metastable state and the true ground state of the double
condensate system. [S0031-9007(97)05175-2]
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Since the first observation of Bose-Einstein conden
tion (BEC) in a dilute alkali vapor [1], substantial effor
has been made to study the properties of these weakly
teracting trapped degenerate Bose gases. As theory
experiment have advanced, a new rich phenomenolo
has appeared in which new conditions arise, conditio
which are not accessible in other BEC systems. O
of the most stunning of these has been the recent
perimental demonstration of a condensate mixture co
posed of two spin states of87Rb [2]. This observation has
prompted significant interest in the physics of a new cla
of quantum fluids: the two-species Bose Einstein conde
sate (TBEC). Fundamental issues distinguish the trapp
TBEC from the single species BEC, and at the heart
many of these issues is the presence of interspecies in
actions and the resulting coupling of the two condensat
Previous theoretical treatments have shown that due
interspecies interactions, the ground state density distri
tion of a TBEC can display novel structures that do n
exist in a one-species condensate [3,4]. In support of th
in the recent87Rb experiments, the measured density pr
files of the two-spin state condensates indicated that th
were observable consequences of the interactions betw
the two condensates. However, due to gravitational
fects, the trap centers of each of the condensates w
separated and a detailed theoretical analysis of the d
was needed before the condensate coupling effect co
be placed on firm grounds [5].

To better understand the properties of the TBE
important questions remain to be answered. For examp
How do the interactions affect the excitation spectra a
stability of the condensates? How will the condensa
evolve under external perturbations? These questions
the subject of the present Letter.

One of the fundamental properties of the confine
condensate lies in the nature of the collective excitatio
For single species alkali BEC, two research grou
have experimentally measured some of the excitat
frequencies [6], and theoretical calculations based on
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Bogoliubov-Hartree theory [7,8] have shown excelle
agreement with many of the experimental results. A
a natural starting point to our TBEC investigation, w
have numerically calculated the excitation spectra
a TBEC confined in an isotropic harmonic trap. W
find that the spectra are significantly modified by th
coupling between different species: the mode frequenc
of the individual condensates are shifted and imagina
frequency (i.e., unstable) modes are found to exist f
large repulsive interspecies interactions. Next we ha
carried out a nonlinear response analysis and discove
that the interspecies interaction gives rise to excitati
modes of different symmetry analogous to the mod
of two coupled pendulums and that harmonic generati
can occur. Our analysis allows us to demonstrate t
existence of novel metastable states of the TBEC. W
show that under sufficiently strong external perturbatio
this metastable state will jump to a different mor
stable state, a phenomenon that may be regarded a
macroscopic quantum transition.

At zero temperature, the self-consistent nonline
Schrödinger equations, known as Gross-Pitaevskii eq
tions (GPE’s), for a TBEC may be written as [3–5]

ih̄
≠c1sr , td

≠t
­ fT1 1 V1 1 N1U1jc1j

2

1 N2U12jc2j
2gc1 , (1a)

ih̄
≠c2sr , td

≠t
­ fT2 1 V2 1 N2U2jc2j

2

1 N1U12jc1j
2gc2 , (1b)

wherecisr , td denotes the macroscopic condensate wa
function for speciesi, with r being the radial coordi-
nate. Ni, mi , and vi are particle number, mass, an
trap frequency, respectively.Ti ­ 2h̄2=2y2mi andVi ­
miv

2
i r2y2 are the respective kinetic and potential en

ergy operators. The interaction between particles is d
scribed by a self-interaction termUi ­ 4p h̄2aiymi and a
term that corresponds to the interaction between differe
© 1998 The American Physical Society
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speciesU12 ­ 2p h̄2a12yfm1m2ysm1 1 m2dg, whereai is
the scattering length of speciesi and a12 that between
species 1 and 2. The time-independent GPE’s are o
tained by replacing the left-hand sides of Eqs. (1) wit
micisrd si ­ 1, 2d, with mi being the chemical potential.

To calculate the excitation frequencies within th
Bogoliubov approximation [9], we first derive the Bo-
goliubov equations using the linear response meth
described by Ruprechtet al. [10]. Let the time-dependent
wave functionscisr , td take the following form:p

Ni cisr , td ­ e2imi ty h̄f
p

Ni cisrd 1 uisrde2ivt

1 yp
i srdeivtg . (2)

After inserting Eq. (2) into Eqs. (1), retaining only term
up to first order inuisrd and yisrd, and equating like
powers ofe6ivt , we derive the equations foruisrd and
yisrd which can be cast into a matrix form:

Mfl ­ vl h fl , (3)

where fl ­ su1l, u2l, y1l, y2ldT is the mode function
of the TBEC with mode frequencyvl. The matricesM
andh have the following forms:

M ­

0BBBB@
Hs1d Ũ N1U1c

2
1 Ũ

Ũ Hs2d Ũ N2U2c
2
2

N1U1c
2
1 Ũ Hs1d Ũ

Ũ N2U2c
2
2 Ũ Hs2d

1CCCCA ,

h ­

0BBB@
1 0 0 0
0 1 0 0
0 0 21 0
0 0 0 21

1CCCA ,

(4)

where Ũ ­
p

N1N2 U12c1c2, and Hsid ­ Ti 1 Vi 2

mi 1 2NiUic
2
i 1 NjU12c

2
j (i, j ­ 1, 2; i fi j). Here

c1srd and c2srd are ground state wave functions which
without loss of generality, are assumed to be rea
Applying the finite difference approximation [4], the
problem of computing the normal modes is cast in th
form of a generalized-eigenvalue problem, which can b
solved using standard numerical software packages.
distinguishing feature of our approach is that we includ
the full coupled Hamiltonian [see Eqs. (1)] in our solutio
without making the Thomas-Fermi approximation (TFA
(i.e., without neglecting the kinetic terms). This fact i
important since the widely used TFA [3–5,11] has bee
shown to be quantitatively unreliable in the treatment o
the TBEC [5].

As in the case of a one-species condensate, the m
frequencies occur in equal magnitude pairs of oppos
sign in our solutions. This can be understood becau
if vl ! 2vl and if uil and yil are exchanged, then
Eq. (3) remains unchanged. The zero mode is twofo
degenerate, with mode functionsu10, u20, y10, y20d ­
sc1, 0, 2c1, 0d or s0, c2, 0, 2c2d, and a corresponding
frequencyv0 ­ 0.

In a 3D spherical potential, the excitation frequencie
vl depend on the radial and angular momentum quantu
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numbersn andl [7]. A sufficient condition forvl to be
real is that matrixM is semipositive [12]. Our numerical
studies show that, if all the other parameters are fixed,M
is semipositive for a finite range of interspecies scatterin
length a12. This range characterizes the stable regio
of the TBEC [13]. Figure 1 shows the first two mode
frequencies forl ­ 1 (for convenience, assuming both
species have the same angular momentum) as functio
of a12. In our calculations, we take Rb as species
and Na as species 2, with scattering lengths taken as
and 3 nm, respectively. For the trap, we assumev1 ­
2p 3 160 Hz andv2 ­ 2p 3 310 Hz. At a12 ­ 0 (for
two uncoupled condensates), the values of these two mo
frequencies do not depend on particle numbers. In fa
they are exactly equal to the respective trap frequenc
for Rb and Na (in our dimensionless units, they ar
1 and 1.945, respectively). In these modes, the atom
in each condensate slosh back and forth as a who
such that the motion is not affected by the interaction
between the atoms. Interspecies interactions significan
alter the mode spectra. For negativea12 —which means
there exists an attractive interaction between Rb and Na
both frequencies shift upward. This can be understood
each condensate sees a somewhat tighter trap due to
extra attractive potential imposed by the other condensa
For positivea12, the opposite is true: mode frequencie
decrease asa12 increases. At a critical value ofa12, the
n ­ 0 mode frequency reaches zero. Beyond that critic
value, the frequency becomes imaginary (in this regio
matrix M has negative eigenvalues). Imaginary excitatio
frequencies mean that fluctuations above the condens
can grow exponentially in time. Thus, a large repulsiv
interaction between the two species can induce instabil
in the system [14].

In Fig. 2, we illustrate the first three isotropic breathin
modes (corresponding tol ­ 0, excluding the zero mode)
as functions ofa12. Unlike the l ­ 1 modes shown in
Fig. 1, these modes are not monotonic functions ofa12.
Instead, they reach minima at a positive value ofa12 and
never become imaginary. As indicated in Fig. 2, for pos
tive a12, the lowest lying mode is an out-of-phase mode i
which the Rb and Na density distributions oscillate with
180± phase difference. This can be intuitively understoo
by realizing that for a repulsive interaction, the excitatio

FIG. 1. Spectra for the first twol ­ 1 modes as functions of
a12. The units for frequency isv1.
1135



VOLUME 80, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 9 FEBRUARY 1998

res
e
n

],

n-

ed
ell

to
.
is

lity
o
th

ated
an
en

ch

s
h
me

und
m

le:
al
(a).
n
r

e

tate
rise
ue
the

be
vel
er

le
For
e
the

ore,

ly-
n-
ed
he
ec-
Fi-
st
es
FIG. 2. First three nonzero isotropic (l ­ 0) modes as func-
tions of a12. Diamonds: in-phase mode; Stars: out-of-pha
mode. Solid lines are guides to eyes. HereN1 ­ N2 ­ 104.

mode energy is lowered when the time averaged over
of the condensates is minimized. Naturally, higher lyin
modes include in-phase motion. Similarly, we find tha
an in-phase mode becomes the lowest lying mode ifa12

is negative since the time averaged overlap of the cond
sates is maximized in this mode.

The values of the isotropic mode frequencies an
the mode type (whether it is an out-of-phase or in
phase mode) are verified by a nonlinear response anal
[10]. We introduce a small sinusoidal modulation to th
trapping potential with modulation frequencyV, and let
the initial wave functions be the solutions to the time
independent GPE’s. The wave functions at a later timet
are obtained by direct integration of the time-depende
GPE’s [Eqs. (1)] using the Crank-Nicholson method
Figures 3(a)–3(c) show the density for both species
the center of the trap as a function of time. Figure 3(
represents an off-resonant modulation. The fluctuatio
remain small as compared to Figs. 3(b) and 3(c) whe
the modulation frequencyV equals to an out-of-phase

FIG. 3. (a)–(c) Density at the center of the trap as functio
of time as the trap frequency modulated at frequencyV.
(a′)–(c′) Fourier spectrum of the Rb density fluctuation. Th
component atv ­ 0 has been excluded. Arrows indicate
the positions of the driving frequencyV. The units for
density and time ares2m1v1yh̄d3y2 and 1yv1, respectively.
Here N1 ­ N2 ­ 103, a12 ­ 3.6 nm. The first three nonzero
isotropic excitation frequencies are 1.575, 3.195, and 3.881.
1136
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mode and in-phase mode frequency, respectively. Figu
3(a′)–3(c′) display the respective Fourier spectra of th
Rb density fluctuations depicted in 3(a)–3(c). For a
off-resonance perturbation [Fig. 3(a′), the intensity of the
spectrum is increased by a factor of 5 in this plot
we see a weak response at the driving frequencyV

and the first few normal mode frequencies. For the o
resonance perturbation [Figs. 3(b′) and 3(c′)], not only
is the response atV much stronger, but the oscillation
spectrum also shows higher harmonics [15]. The mark
difference between the off- and on-resonance, as w
as the in-phase and out-of-phase response allows us
identify the resonance frequencies and the mode types

Another feature of this nonlinear response analysis
that it can be used to investigate the mechanical stabi
of the wave functions. Figures 4(a) and 4(b) display tw
possible solutions to the time-independent GPE’s. In bo
solutions the two condensates have become segreg
into a central core dominated by one species with
outer shell of the second species, the difference betwe
the two being which atom comprises the core and whi
comprises the shell. In Figs. 4(a′) and 4(b′) we illustrate
the respective time evolution of the initial wave function
plotted in 4(a) and 4(b) under external drive. In bot
cases the trapping potentials are modulated with the sa
frequency and amplitude. Figure 4(a′) shows a typi-
cal off-resonance response expected for a stable gro
state—the condensates oscillate around their equilibriu
state. On the other hand, as can be seen in 4(b′), the
state represented by 4(b) is not unconditionally stab
under a sufficiently strong external perturbation the initi
state (b) makes a sudden jump to the other state
A calculation of the expectation value of Hamiltonia
confirms that the energy of state (a) is, in fact, lowe
than that of (b). We point out that the jump from stat
(b) to (a) will not occur if the perturbation is not strong
enough. Hence, state (b) represents a metastable s
of the TBEC. These macroscopic metastable states a
from the interspecies interactions and hence are uniq
for the multicomponent condensates. We suggest that
jump between such metastable and stable states may
regarded as a macroscopic quantum transition, a no
phenomenon whose detailed dynamics is currently und
investigation. Our calculations confirm that it is possib
to generate such a metastable state experimentally.
example, if the Na condensate is formed prior to th
Rb condensate such that the Rb atoms condense in
presence of the preexisting, repulsive Na condensate c
then the Rb will condense into the metastable shell.

In summary, we have used a nonlinear response ana
sis and an extended Bogoliubov-Hartree theory to i
vestigate the collective excitation spectra for a trapp
TBEC. We have shown that the coupling between t
condensates has a dramatic effect on the excitation sp
trum and can give rise to a novel metastable state.
nally, we have found that imaginary frequencies exi
in nonisotropic modes for strong repulsive interspeci
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etastable
tential.
FIG. 4. (a),(b) Two sets of solutions to the time-independent GPE’s. (a) Represents the ground state; (b) represents a m
state. (a′),(b′) Density at the center of the trap as functions of time under an off-resonance modulation of the trapping po
The unit for length issh̄y2m1v1d1y2. Parameters:N1 ­ N2 ­ 103, a12 ­ 9.6 nm.
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interactions. We note that although we have not tak
gravity into account, even when gravity is included th
essence of our results remain intact for realistic choices
atomic species, spin states, and trapping potentials. T
main effect of including gravity is to break the perfec
spherical symmetry of the condensates. This change w
quantitatively but not qualitatively modify our results.

Goldstein and Meystre have shown that a homog
neous (untrapped) TBEC also possesses imaginary
citation frequencies, an effect which is reminiscent
the cross-phase modulation (XPM) instability in non
linear optics [14,16], where such modulation instabilit
can lead to the breakup of intense cw radiation into u
trashort pulses and the formation of solitons. In fact, th
homogeneous GPE’s for BEC are very similar to the no
linear Schrödinger equations describing wave propagat
inside optical fibers. We believe that the extensive wo
in the field of nonlinear optics may help us understand t
dynamics of condensates; however, how the TBEC w
evolve under the influence of these instabilities remains
be studied.
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