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Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows
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We show that the statistics of an edge type variable in natural images exhibits self-similarity prop-
erties which resemble those of local energy dissipation in turbulent flows. Our results show that self-
similarity and extended self-similarity hold remarkably for the statistics of the local edge variance, and
that the very same models can be used to predict all of the associated exponents. These results suggest
using natural images as a laboratory for testing more elaborate scaling models of interest for the statisti-
cal description of turbulent flows. The properties we have exhibited are relevant for the modeling of the
early visual system: They should be included in models designed for the prediction of receptive fields.
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The existence of self-similarity (SS) is well known in gument of Kolmogorov [2]. The cascade of energy from
both natural images [1] and fully developed turbulenceone scale to another is described in terms of local energy
[2]. Quite recently, there has been an increase of intereslissipation per unit mass within a box of linear size
in both fields. In turbulent flows, the notion of “extended This quantity,e,, is given by
self-similarity” (ESS) [3—5] has been introduced, and
several models proposed predicting correctly the relevant e,(x) « f dx’ Z [0,v;(x)) + a,v:(x), (1)

SS exponents from only one or two parameters [6,7]. Ix—x'|<r ij
Our main motivation for studying the statistics of naturalwherevi(x) is the ith component of the velocity at point

images s its relevance for the modeling of the early, “go i Gimilaritywill hold if, for some range of scales
visual system. In particular, the epigenetic developmen ne finds the scaling relation,

could lead to the adaptation of visual processing to the
statistical regularities in the visual scenes [8—13]. Most (ePy = r™r, (2)
of these predictions on the development of receptive fields »
have been obtained using a Gaussian description of tH&here (er) denotes thepth moment of the energy
environment contrast statistics. However, non-Gaussiaflissipation that is the average[ef.(x)]” over all possible
properties such as the ones found by [14,15] could p&alues ofx. In fluid dynamics this property holds in the
important. To gain further insight into non-Gaussianso-called “inertial range” [20]. A more general scaling
aspects of natural scenes we investigate whether théylation, callecextended Self-SimiIarit)haS been found to
exhibit the rich structure found in turbulent flows. be valid in a much larger scale domain, even if the inertial
Scaling properties of natural images have been studied@nge does not exist [3,4]. This scaling can be defined by
by several authors. They have found [1,16,17] that the (e? a\p(p.q)
Y1) €r) o (eh'P 7, 3
power spectrum of luminosity contrast follows a power g r
law of the formS( f) « Ifl;’" although the value ofy  where p(p, q) is the ESS exponent of theth moment
can have rather large fluctuations [18]. The magnitude ofvith respect to thesth moment. Notice that if SS holds
these fluctuations depends on the diversity of the imagethenr, = 7,p(p,q). In the following we will refer all
in the data set. A more detailed—although different—the moments tde?).
analysis of the scaling properties of image contrast The basic field in turbulence is the velocity from
was done by [14,15] who also noted analogies withwhich one defines the local energy dissipation. The
the statistics of turbulent flows. Additional luminosity largest contributions t@, come from abrupt changes in
analysis was also done by Ruderman [19], providing someelocities. For images, the basic field is the contrds)
evidence of multiscaling behavior. There is, however, ndhat we define as the difference between the luminosity
model to explain the intriguing scaling behavior observedand its average. A natural candidate for a variable analog
However, in turbulent fluids the unpredictable characteto the local energy dissipation is a quantity which takes its
of signals has led to a large amount of effort in order tolargest contributions from the places where large changes
develop statistical models (see, e.g., Ref. [20]). Qualitain contrast occur. This is precisely a measure of the
tive and quantitative theories of the statistical propertiegexistence of edges below the scale under consideration.
of fully developed turbulence elaborate on the original arEdges are indeed well known to be very important in
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characterizing images [21]. A recent numerical analysis ln<e> a b
suggests that natural images are composed of statistically 29
independent edges [22]. o
We choose to study two variables, defined at position R T
x = (x1,x) and at scaler. The variablee,, . (x) takes 22 T, L
1 H 1 33 41‘“‘. ‘\’"\.‘
contrlb?npns from edges transverse tderizontal seg- . N\\ ~
ment of sizer, med> s AN
1 X +r aC(X/) 2 ) -
et = - [ (22) dy. (@
rJ A
A vertical variablee, ,(x) is defined similarly from an - T,

integration over the vertical direction. From here we see \\ \
that ,,(x) (I = h,v) is thelocal linear edge variance <> ™ = -
along the directiori at scaler. e
We have analyzed the scaling properties of the local s
linear edge variances in a set of 45 images taken in the
wood of 256 X 256 pixels each (see [15] for technical
details concerning these images). With these data, one 55 \ \
can explore scales up 0~ 64 pixels. L I SIS S S S T
First, we show that SS holds in a range of scates
with exponentsr;, , andr, ,. This s illustrated in Fig. 1, »
where the logarifm of e moments of the vertcal anck\% & or"\ors 3 1 o pold. ‘&) Vorkial e,
horizontal edge variances [as defined in Eq. (4) for thg — . (b) vertical direction,/ = v. The relative error is
horizontal case] is plotted as a function ofrln Next,  uniform and about 8%. The value of the SS exponents
we test ESS. The results are shown in Fig. 2, where axtracted from the large behavior arer;, = —0.20 * 0.01,
linear behavior of Ife/,) vs Ie7,) is observed in both 7ns = —051 = 0.02, and 75 = —1.19 % 0.06 for the hori-

. . . - - . zontal direction, andr,, = —0.26 * 0.04, 7,5 = —0.62 =
the horizontal { = /) and the vertical (= v) directions. 0.03, andr,s = —1.47 * 0.06 for the vertical direction. The

On_e can see that ESS i§ valid in a wider range than S&glid lines are the slope given by these exponents. This linear
This is similar to what is found in turbulence, where behavior does not hold at smal. A numerical analysis

this property has been used to obtain a more accuratedicates that it is a finite resolution effect although it could
estimation of the exponents of the structure functions (se%,e masking a different, smallregime. There is also an upper
e.g., [23]). The horizontal and vertical exponenis p, 2) ound that has prevented us from going beyend 64.

and p,(p,2), estimated with a least squares regression,

are shown in Fig. 3 as a function ¢f. From Figs. 1—
3, one sees that the horizontal and vertical direction
have similar statistical properties, which was not expecte
(e.g., trees tend to increase luminosity correlations in th
vertical direction). The SS exponents differ, as can b

Inr Inr

gion for the SS exponents [2]. The nonlinear behavior
bserved in Fig. 3 shows that this naive scaling is vio-
ated (this is similar to what was observed in turbulence
24], where the nonlinear behavior was interpreted as evi-
seen in Fig. 1. What is even more surprising is that ES ence of.the. multifractal character of the turbglgnt flows
not only holds for the statistics in both directions, but.25])' This %ls_crepancy t;ecomes Tore(jdrama;;c i I__:I_q'k.(5)
it does it with thesameESS exponents, i.eg,(p,2) ~ |sxexpresse |r;+t?rmspo a ”Orma'z‘? var.|a e.. axing
pv(p,2), within our numerical accuracy. €, =lim,_.(er ")/(er), the new variable is defined as
Let us now consider scaling models to predict the/r = €/€. If P,(f)is the distribution off, the scaling
p dependence of the ESS exponepig p,2). Since 'elation, Eq. (5), readB,(f) = P.(f). That this identity
ESS holds, the SS exponents, can be obtained from does not hold can be observed in Fig. 4. A way to general-
the p;(p,2)’s by measuringr;,. The simplest scaling 128 this scaling hypothesus is to say that, ms_tead of havmg
hypothesis is that, for a random varialig(x) observed ©ne value ot as in (5), every value ok contributes with
at the scale [such ase;, (x)], its probability distribution & given weight. One then has

P,[€,(x) = €] can be obtained from any other scaldy 1 f
P.(f) = [ G,.(In a)—PL<—>d|na. (6)
Pole) = — F( : ) (5) @
" a(r,L) "\a(r,L)) This scaling relation has been first introduced in the

» context of turbulent flows [6,7,26,27]. One can see that
From this, one derives that(r, L) = [:—%;]1/” foranyp,  Eq. (6) is an integral representation of ESS with general
and thatp(p,2) « p. If SS holds, therr, « p: Fortur- (not necessarily linear) exponents. Once a ketgl is
bulent flows this corresponds to the Kolmogorov predic-chosen the(p,2)’s can be predicted.

1099



VOLUME 80, NUMBER 5 PHYSICAL REVIEW LETTERS 2 EBRUARY 1998

In<ée> a b tor « itself becomes a stochastic variable determined by
N 7 the kernelG,; (In «). Since the scalé is arbitrary (scale
r can be reached from any other scalg the kernel must
obey a composition law. This stochastic variable at scale
s r can then be obtained through a cascade of infinitesimal
- e processe§s = G, ,+s;.
/ / Specific choices 065 define different models of ESS.
The She-Leveque (SL) [6] model corresponds to a simple
process such that is 1 with some probabilityl — s
o o and is a constang with probability s. One can see that

e - s = 1= Bz In(<f ’*5*>) and that this stochastic process yields
s / //’ a log-Poisson distribution fow [30]. It also gives ESS
with exponents(p, ¢) that can be expressed in terms of
a single paramete( as follows [6]:

1 - B —(1—-B)p
e ( : 7
4 PP = T g (= B g
. / / We have tested the model with the ESS exponents
B obtained with the image data set. The resulting fit for
the SL model is shown in Fig. 3. Both the vertical and
horizontal ESS exponents can be fitted with= 0.50 +

FIG. 2. Test of ESS. We plot {g/,) vs Ixe},) for p = 3, 0.03. More complex processes other than log-Poisson
5, and 10. Data correspond to scales frers 8 to r = 64
pixels. The effect of finite size effects can again be observed
for r close to 64 pixels. (a) Horizontal directiord,= #;

(b) vertical direction,l = v. The solid lines are the slope
given by the calculated exponeni$p,2).

-3.5

h<ée> 5

-2.5

In <€l >

In<ée> In<e>

The difference between Egs. (5) and (6) can also be
phrased in terms of multiplicative processes [28,29].
stead off, ~ fr, we now havef, ~ afr, where the fac-

p(p:2) a b
16

FIG. 4. Verification of the validity of the integral representa-
P » tion of ESS, Eq. (6) with a log-Poisson kernel, for horizontal

; ; local edge variance. The largest scalé is= 64. Starting from
FIG. 3. ESS exponenis(p,2), for the vertical and horizontal ; X < S
variables. Eachpvalueusog,(p,z) was obtained by a linear the histogranP, ( /) (crosses), and using a log-Poisson distribu-

regression of Ite”.) vs In(e?,) for distances between 8 and tion with parameteg = 0.50 for the kernelG,,, Eq. (6) gives
64g(l Zuh). (a) >Horizrc‘><ﬁ'éél> directionpy(p.2): (b) vertical 2 prediction for the distribution at the scale= 16 (squares).

: . o B This has to be compared with the direct evaluationPef f)
g'{e?rt]'gg'elpv(!Fﬁg)'be-gt‘eﬁts?gdolé?aeir{ggrﬁ?gtsjhghf'iv(\;'tshothe (diamonds). Similar results hold for other pairs of scales. The

- S error bars have been estimated as follows: The data set was
ﬁgg:;r?;tgagsgﬁoﬂggé e?/?a?unat?rzlgiuze)df(?ry e?(\;lyl]dlgfg ﬂtﬂe?nfm divided in nine groups, as explained in the previous figure, and

: : ; he histograms at the scalésand r were computed for each
and computing the dispersion of these values. The errors gro;é@roup' Then for each group the histogram at scalgas used

as p increases. This is because moments of higher order a . L h e
sensitive to the tail of the distribution of the local edge variance. obtatl)n ta predtlﬁnon f%r tth% hls(tjogram a;t 3(:&'? The differ d
The fit is such that the following average quadratic error, ences between the predicted and computed values were square

[p(p2exp—p(p D 'and averaged over the groups. Its square root gives a measure
E=3%, — 5, » is minimized. We have checked of the error committedn the prediction represented by the er-
that a Gau55|an data set of i images does exhibit ESS althoughriir bars. The test for the vertical case is as good as for the
cannot be explained by the SL model. horizontal variable.
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