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Electron-Hole Coherence and Charging Effects in Ultrasmall Metallic Grains
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We consider a model for electron tunneling between a pair of ultrasmall metallic grains. Under
appropriate circumstances, nonequilibrium final state effects can strongly enhance tunneling and produce
electron-hole coherence between the grains. The model displays a quantum phase transition between a
Coulomb blockaded state to a coherent state exhibiting sub-Ohmic tunneling conductance. The critical
state of the junction exhibits a temperature independent resistance of orderhye2. Finally we discuss the
similarities between the quantum transition in our model and the metal-insulator transition in granular
wires observed by Herzoget al. [S0031-9007(97)04521-3]

PACS numbers: 73.23.Hk, 71.10.Hf, 73.40.Gk
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Recent work by Herzoget al. [1] has found dramatic
evidence for an unusual metal-insulator (MI) transition
granular wires fabricated byin situ deposition through
a metallic stencil onto a GaAs substrate. The transiti
involves an abrupt multiorder change in wire resistance
a function of the amount of deposited metal. The transiti
occurs in a variety of materials (including Sn, Pb, Au, A
Pb0.85Bi0.15). Although the transition may be observed i
wires as wide as 7000 Å, the resistance gap decreases
increasing wire width and is absent in two-dimension
films.

In this paper, we wish to consider the possibility o
modeling the above behavior in terms of a pair of metal
grains in close proximity. Our model will include two
ingredients. The first is electrostatic charging effec
This should be important in the Herzoget al. experiments
since the charging energyEQ is estimated [2] to be large
(100 K). The second ingredient is a nonequilibrium fin
state effect in which electrostatic fields between the tw
particles are suddenly switched on during the tunneli
process. This effect is an exciton effect in which th
tunneled electron is attracted to the positively charg
counter electrode. We will show that the competitio
between the exciton effect and Coulomb blockade giv
rise to a MI transition between a phase exhibiting su
Ohmic I(V) characteristics to a phase exhibiting a Coulom
blockade. The critical state separating these two pha
exhibits a temperature independent conductance. Fina
we will discuss the similarities between these results a
those of Herzoget al. [1].

We begin our discussion by considering a pair of iden
cal metallic grains on an insulating substrate. (See Fig.
The grains are in close proximity and form an ultrasma
tunnel junction with intergrain capacitanceC , 10215 F.
(For the present argument, we will neglect the intragra
capacitance.) The two grains may be part of a granu
host. However, tunneling to other grains in the host ma
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rial will be ignored. Now consider a tunneling process i
which an electron tunnels from grain #1 to grain #2. Se
Figs. 1(c) and 1(d). In the classical Coulomb blockad
picture a tunneled electron causes all energy levels in t
grain #2 to up-shift bye2y2C and all energies in grain #1
to down-shift bye2y2C. In the diagram, we have repre-
sented the electrostatic potentials and surface confinem
potential as a square well whose shape is unaffected by
tunneling process. Notice that the classical Coulom
blockade picture does not properly describe the nonequil
rium effect associated with suddenly switching on the ele
trostatic attraction between the two grains. See Figs. 1
and 1(f). Such effects can give rise to shakeup (orthog
nality catastrophe) effects which can seriously effect tu
neling rates [3,4], especially in small particles. To see ho
important these effects might be, consider the classic pro
lem of the x-ray absorption edge [5,6]. In that problem, th
absorption intensity, near threshold, could vanish at thres
old due to the orthogonality catastrophe [6] or could exhib
a power law divergence known as the exciton effect [5
A priori one might expect that similar effects could caus
the differential conductance of a tunnel junction to vanis
or diverge.

To examine these effects in detail, we consider
model [3,4,7,8] which describes tunneling between th
two grains

H ­ HL 1 HR 1 HT 1
Q2

2C
, (1)

where HT ­
P

kpfTkpeifc1
k cp 1 H.c.g and wheref is

defined in terms of the voltage differenceVL 2 VR across
the grains via the relationÙf ­ esVL 2 VRdyh̄. Finally,
theHL andHR are given by

Ha ­
X

k

e
0
k,ac1

kacka 1 Q
X
kk0

V a
kk0c1

kack0a , (2)

where V a
kk0 represents the sudden change of surface a

electrostatic potentials on graina ­ L, R which occurs
© 1998 The American Physical Society
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FIG. 1. (a) An illustration of two nearby metallic grains on an
insulating substrate. The two grains form an ultrasmall tunn
junction. Although the grains may be part of a composit
granular material, coupling to other grains in the host mater
will be ignored. (b) Energy levels and confinement potenti
associated with (a). (c) Metallic grains after tunneling even
An unrealistic charge distribution is obtained whenV a

kk0 is set
to zero. (d) The energy levels and confinement potentia
associated with (c). (e) Metallic grains after tunneling even
Charges localized at the tunneling site give rise to long ran
electrostatic interactions which act as a suddenly switched-
potentialV L

kk0 ­ V R
kk0 . (f) The nonequilibrium energy levels and

confinement potential associated with (f).

during the tunneling process. IfV a
kk0 ­ 0, we recover the

standard model [7] [see Figs. 1(c), 1(d), and 2(a)] whic
describes the effects of particle-hole excitations induc
by tunneling processes in ultrasmall tunnel junction
V L

kk0 ­ V R
kk0 fi 0 would be chosen to include shakeup an

other final state effects in symmetric tunnel junctions.
Now consider the zero temperature tunnel conductan

to leading order inTkp ­ T . One may calculate the
tunneling current usingI ­ 22e ImfXrets2eV dg where
Xret ­ jT j2

R`
0 dt Ge

RstdGh
Lstd expivt is the retarded

response function associated with the nonequilibrium pr
duction of theR electron andL hole. Now the nonequi-
librium electron and hole propagators associated wi
the suddenly switched onV a

kk0 are given byG
h,e
R std ~

NRt2s16dRypd2
exp2iER

f t where Na is the density of
states at the Fermi level in thea ­ L, R electrode andda

is a phase shift associated with the scattering of electro
off the potentialV a

kk0 . In the above result,1 is used for
hole and2 for electrons in the right electrode. Similarly
G

h,e
L std ~ NLts17dLypd2

exp2iEL
f t for the left electrode.

Because of intergrain charging energy, the electrons tun
to a nonequilibrium state characterized by Fermi leve
shifted such thatER

f 2 EL
f ­ e2y2C. Combining these
el
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FIG. 2. Differential conductance fore . 0 (dot-dashed line),
e ­ 0 (solid line), and e , 0 (dotted line). e . 0 curve
assumes exciton effect dominates the orthogonality catastrop

results one obtainsdIydV ~ s1yRT d hse2yCdyfseV 2

e2dy2Cgje where e ­ 2sdRyp 1 dLypd 2 sdRypd2 2

sdLypd2 andR21
T ­ 4pe2NLNRjT j2. For small positive

da , there is a competition between excitonic effect
associated with2sdRyp 1 dLypd and orthogonality ef-
fects associated with2sdRypd2 2 sdLypd2. Depending
on which terms dominate, one can obtain [Fig. 2(b)]
divergent differential conductance [9] at thresholdVT ­
e2y2C or [Fig. 2(c)] a vanishing conductance at threshold

In general, the form of the final state interactionsV a
kk0 is

not important to the following discussion and is difficult to
calculate. However, there are several observations whi
can be made: First we observe that one can estima
[10,11] jdL,Rj , pyk wherek is the number of transverse
channels available for intergrain tunneling. Next, we
observe thatdR will be positive if V a

kk0 is a potential which
tends to keep the tunneled electron in the electrode ne
the tunneling site, i.e., if the electron is attracted to th
positively charged electrode. SimilarlydL will be positive
if the hole is attracted to the negatively charged electrod
Hence the electrostatic interaction between a pair of grai
with a small number of accessible tunneling channels
expected to give a positiveda large enough to make
exciton effects observable.

To some readers it may be surprising that the repulsiv
Coulomb interactions would enhance tunneling betwee
the grains. The behavior is not unusual and can b
found in several simple models. For instance, consider
pair of semi-infinite 1D spinless chains described by th
Hamiltonian H ­ ft0c1

L0cR0 1 H.c.g 1
P

i­0ftc1
Li11cLi 1

H.c.g 1 Ufc1
L s0dcLs0d 2

1
2 g fc1

R s0dcRs0d 2
1
2 g. This

model is equivalent to a 1D Anderson impurity model
The interchain tunneling is associated with a transver
magnetic field acting on the impurity. ForU . 0 the mag-
netic susceptibility and transverse magnetizationkc1

L cRl
will be rapidly enhanced with increasingU. Hence, the
differential tunneling conductance will be significantly
increased by a large positiveU.

The above discussion of the exciton effect has bee
performed to leading order injT j2. We will now go
beyond leading order injT j2 and show that ifjT j large and
e . 0, the Coulomb blockade is destroyed. To do this, w
integrate out the particle-hole excitations within the grain
This gives an effective action in imaginary time of the
1047
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S ­
Z b h̄

0
dt

C
2e2

Ùf2 1 t2e
Q

Z b h̄

0
dt dt0 ast 2 t0d

3 h1 2 cosffstd 2 fst0dgj ,

where astd ­ a0fpkBTy sinspkBTtdg22e and a0 ­
h̄ys2pe2RT d. This is a one-dimensionalXY model with
long range interactions. This model had been studi
within the framework of the renormalization group b
Kosterlitz [12] who found an order-disorder transition a
a0 ­ ac ­ 2yep2 for e $ 0. The model is disordered
for e # 0, although the absence of an ordered phase wh
e ­ 0 was a source of controversy [13–15].

In order to understand the nature of the two phases,
calculated the conductance of the model using the Ku
formula Gsvd ­ kjItsvdj2lyv whereItsvd is the tunnel-
ing current. To leading order in an expansion in powe
of 1ya, a spin-wave calculation reveals that

G ­
2
p

p a0

RQ

Gssss1 1 edy2ddd
Gs1 1 ey2d

µ
EQ

pkBT

∂e

, (3)

where EQ ­ e2y2C and RQ ­ h̄ye2 ­ 4.11 kV. We
see thatG diverges atT ! 0. Hence one identifies the or-
dered phase as sub-Ohmic. One can also calculate the
ductance to leading order ina0. In this case one findsG ,
sa2

0yRQd spkBTyEQd2s12ed which vanishes asT ! 0,
indicating that the disordered phase is insulating.

To understand the transition in greater detail, we ha
evaluated the dc conductance using a Monte Carlo (M
simulation [16]. Using [14]

G ­
2pa0

h̄bRQ

Z h̄b

0
gestd kcosffstd 2 fs0dgl dt , (4)

wheregestd ­ fpskBTyEQdy sinspkBTth̄dg2e, we evalu-
ateG usingkcosffstd 2 fst0dgl obtained from a series of
simulations including the 64 and 128 time slice system
The results fore ­ 0.2 are presented in Fig. 3. The
transition between the sub-Ohmic (higha0) phase to the
insulating (low a0) phase is evident. Interestingly, one
observed the conductance curves cross at a single po
This point identifies a transition at a critical value o
ac ­ 0.9 which compares well toac ­ 1.01 obtained by
Kosterlitz renormalization group (RG) treatment.

The fact that curves intersect at all indicates thatac

separates metallic from insulating behavior. Howeve
the observation that all lines cross atGc ø 11e2yh ø
1y2.3 kV seems to indicate that the critical state has a
nite temperature independent conductance. The existe
of a critical state with a finite resistance can be understo
as follows. In general, finite size scaling theory implie
that the critical states exhibit correlations of the form
kexpifstdexp2ifs0dl ­ stQytdd221hFsh̄bytd where
tQ ­ h̄yEQ is the width of the time slices,d ­ 1 is the
space-time dimensionality, andFsxd is a universal scaling
function which is finite asx ! 0. According to Fisher,
1048
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FIG. 3. Conductance obtained from a MC simulation. Notic
Gsa0d curves intersect atGc ø 11e2yh. This suggests that
the conductance of the critical state is a universal, temperat
independent constant.

Ma, and Nickel [17],h ­ 1 1 e is exact for our model.
It follows that

Gc ­ bsed
e2

h
(5)

at criticality. Since the dc conductance depends only
thev ! 0 limit of the model, the above result is a univer
sal bute dependent result. Typically simulations for othe
values ofe reveal that1yGc , 105 V except in thee ! 0
limit where Gc ! `. It should be mentioned that the
Herzog data reveal that the highest resistance metallic s
in Au (width: 400 Å), Pb0.85Bi0.15 (width: 575 and 850 Å),
and Sn (width: 550 Å) wires have critical resistances
2 kV, 2 kV, 4 kV, and4 kV, respectively. Such val-
ues ofG21

C are consistent with Eq. (5).
We wish to consider the relevance of our tunnel jun

tion to the MI transition observed by Herzoget al. [1].
Herzog’s MI transition occurs in many different materi
als and exhibits a resistance gap which depends on
wire width, 500–6000 Å. This suggests that the tra
sition does not involve some microscopic phenomen
in the interior or surface of the grains, but, instead, i
volves some low energy collective behavior which requir
two or more grains. At this point, one might model th
wire as a disordered network of tunnel junctions whe
Coulomb blockade effects could produce an insulatin
phase. This is reasonable since charging energies are
timated [2] to be,100 K. Assuming the tunnel junction
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conductances to be broadly distributed, the wire resistan
will be dominated by the tunnel junctions with highes
resistance [18].

Now consider the dependence of the wire resistance
the wire width. Letlf be the phase coherence length
i.e., the length scale that correlationskeifs$rde2ifs0dl die off
in the disordered phase. Then for wire widthsw ø lf,
the low frequency behavior of the obstruction will be
described by the tunnel junction model with a chargin
energy which decreases with increasing wire width. Fo
instance, in a narrow wiresw ø lfd phase difference
across multiple tunneling sites spanning a crack or we
link will be equal. (See Fig. 4.) Hence, the capacitance
comprising the weak link add in parallel. This is a usefu
observation since the decreasing charging energy asso
ated with increasing wire width will cause the resistance
the noncritical sub-Ohmic states to increase likesTyEQde

[Eq. (3)] similar to the behavior observed by Herzoget al.
The increase of the metallic wire resistance with wire widt
is a unique phenomenon which is difficult to obtain from
alternative models. The model also predicts that the res
tance of insulating wires willdecreasewith increasing wire
width. Consequently the resistance gap will decrease un
w , lf where the crossover to two dimensional transpo
will occur.

We should mention that one should also be able
search for the sub-Ohmic to insulator transition in doub
quantum dot systems of the sort considered by Wau
et al. [19]. The double-dot systems have several usef
features including (1) a small number of tunneling chan
nels which implies the large phase shifts [10] required fo
an exciton effect, (2) small intergrain capacitances [19
and (3) precise control of the tunneling barrier betwee
dots. Unfortunately, the Waugh experiment itself coul
not distinguish between a crossover and a phase transiti
However, this is not an inherent limitation of the experi
mental method. So an attempt to search for this quantu
phase transition in the double dot should be feasible a
would certainly be most welcome.

FIG. 4. Modeling a crack as a series of parallel tunne
junctions; see inset. Observe that the charging energy decrea
with increasing wire width. The decreasingEQ causes the
resistance gap to close and the resistance of noncritical s
Ohmic wires to increase.
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