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Scaling and Universality in the Anisotropic Kondo Model and the Dissipative Two-State System
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Scaling and universality in the Ohmic two-state system is investigated by exploiting the equivalence
of this model to the anisotropic Kondo model. For the Ohmic two-state system, we find universal
scaling functions for the specific heét, (T'), static susceptibilityy, (7), and spin relaxation function
S.(w), depending on the reduced temperat@éA, (frequencyw/A,), with A, the renormalized
tunneling frequency, and uniquely specified by the dissipation stremgithh < « < 1). The scaling
functions can be used to extragtand A, in experimental realizations. [S0031-9007(97)05207-1]

PACS numbers: 71.27.+a, 75.20.Hr

The low energy effective model for a large numberon « and A, and which decreases monotonically with
of physical systems corresponds to a two-state systeincreasinga for fixed A. Fora = 0, A, = A (decou-
coupled to an environment [1,2]. Examples includepled system plus bath) and far > 0 the renormalization
two-level atoms coupled to the electromagnetic field inof this scale increases dramatically as the dissipation
guantum optics, electron-transfer reactions in biologicaktrength is increased to I\, /w,. ~ (A/w )17, Be-
systems, and the tunneling of defects in metallic glasselsveen « = 0 and « = 1, there is a range of different
[3]. The simplest model for describing such systems idehavior from coherent oscillations at zero dissipa-

the spin-boson Hamiltonian [1], tion to damped oscillations at intermediate dissipation
1 1 ; 1 strengths and eventually to incoherent relaxation at
Hgp = ) Ad, + ) €0, + sz(ai a; + ?> strong dissipation [1,2]. Ata > a.(A) = 1 there is
l

a ‘“localization” transition at7T = 0 corresponding to
@ a vanishing renormalized tunneling frequengy = 0

[11]. Here we address one aspect which has not been
dealt with in a unified way in the literature, namely, the
meaning of universality and scaling in these models, in
particular, for physical properties, such as thermodynamic
nd dynamical quantities. We apply Wilson’s numerical
enormalization group (NRG) method to the AKM to
calculate the specific heat, static susceptibility, and dy-
namical susceptibility. The equivalence of the two

[ =1 i i A , . . )
;:r?ordlnateQ - 2610{'.1 thth Colupllntg Cgr;]stqnti‘,. . Int_ models then allows us to discuss scaling and universality
is paper we restrict ourselves to mic dissipation; ' i,o dissipative two-state system.

f;)r Wh(ij(zlh the environment spectral functiof(w) = The AKM [12] is given by
72i(=-)8(w — w;) takes the formJ(w) = 27w,

i i : : _ t Jo t - T +
for w < ., where . is a high energy cutoff and  H = D eicipcio + = D (cfjewnS™ + cyenS™)
a is a dimensionless coupling constant characterizing ko 2w
the strength of the dissipation. The two dimensionless J + +

J ” T D (clieer = cqer)SE + gushS..  (2)

couplings of the model arA/w. and«: in this paper we <

consider the region of parameter spaép,. < o < 1, , , . ,
which includes the interesting case of a nonadiabatic batf{/n€re the first term represents noninteracting conduction
lectrons and the second and third terms represent an ex-

The Ohmic spin-boson model has been intensivel ; X ; ;
investigated over the last ten years [1,2]. The mairfhange interaction between a localized spj2 and the

interest has been in understanding how the environmergenduction electrons with strengih , J;. A local mag-
influences the dynamics of the two-level system and il€tic field, 2, coupling only to the impurity spin in the
particular how dissipation destroys quantum coherenc?o_ndo model [the last term in Eq. (2)] corresponds to a
[1,2,4—7]. Insight has been gained by exploiting thellnite bias, €, in the spin-boson r_nodel. _The correspon-
equivalence of the Ohmic two-state system to severdi€nCe betweerti and Hy;, established via bosonization
other models, including the inverse square Ising model], impliese = gugh, - = poJ., anda = (1 + ),

[4], the anisotropic Kondo model (AKM) [5], and the where tans = —%"J”. é is the phase shift for scatter-
resonant level model [8—10]. The qualitative picture thating of electrons from a potential;/4 and py = 1/2Dy

has emerged can be summarized as follows. There is the conduction electron density of states per spin at
a renormalized tunneling frequenay,, which depends the Fermi level for a flat band of widthD, [1,5,9]. We

| C;
+ 36]0(&; m(ai +al).
Here the Pauli matriceé;,i = x,y,z describe the two-
level system,A is the bare tunneling matrix element
between the states, =1 and o, = | and € is a bhias.
The environment is represented by an infinite set o
harmonic oscillators (labeled by the indExwith masses
m; and frequency spectrurw; linearly coupled to the
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choosew,. = 2D so thatA = J, and measure all en- 2.0 . —peessesssEssTEEEE
ergies relative td, = 1. Since we are interested in de- ,/,"

scribing the Ohmic two-state system ftyw, < o < 1, K ,/

this requires in the AKM thatpgJ, < 1 — poJj for 15 | /' ! i
poJj <1 (@ — 17 case) andpoJ, < 1/(poJy)* for | scemmem=” -

poJ) > 1 (o — 0 case). The AKM forpgJ, > poJy [ ======"""7"7~
will be dealt with elsewhere, so in effect we consider only = 210 |
poJ L < min(pyJy, @). w
We solve the AKM using Wilson’s NRG method [13]. Zuf
In this procedure, a separation of energy scales is made
by introducing a logarithmic mesh of points k, = 0.5 -
A", A > 1, and transforming they;, to a basis of

Wannier statesf,, [13] at the impurity, with fo, =
+ L .
, such thatH, = € is tridiagonal in 0.0 :
Zk Cko ¢ Zk,u, kuChuCku g 0 50 100 150

k space, i.e.H. — >, > A‘”/z(fmenM + H.c). N

The Hamiltonian (2) in the new basis is now diagonal- IG. 1. The lowest rescaled energy levels for eveéritera

ized by d_ef_lnlng a sequence O.f finite size Hamllton!an ions for J; = 0.443 and J, = 0.010 [5] corresponding to
Hy containing the firstv Wannier states together with A — .01 and« = 0.8 in the spin-boson model. The energy
the Impurlty One diagonalizes the rescaled Hamiltonidevels are labeled by the conserved quantum numbers, total

ans iy = A > HN which satisfy the recursion relation pseudospinj [14], and totalz component of spirs.. There
is a crossover to the strong coupling fixed point at iteration

_ _ t R
Hyi = A%/ZHN + 2, (fN+1ufre + HC). Thisgives N, corresponding taA =™~/ = A, = Ty. Spin rotational
the excitations and eigenstates at a corresponding set mivariance is restored at low energies (e.g., he 0 states

' oAt with S, = 0 andS, = =1 become degenerate), so the states at
energy scaIeE)N def”?ed bwa?’._ A~"7 and E}IIOWS the the strong coupling fixed point can be labeled by total spin
calculation of dynamic quantities at frequencies~ wy a5 indicated.

and thermodynamic quantities at temperatukgdy ~
21;’0( t)l:g? ?;;a;n ?(;()ED }Qe i\l/:eorl: rt|)er Eran;;oLm ?{f(t’ Q 1 results of [13]). A detailed analysis [16] givegy ~

, ?V ) xlw, )= X, (A/w )1~ with A, « related toJ, ,J; as above and
ix"(o,T) = ZN Do Mo S ey Whereen, €, j |« Jj and a prefactor also depending an i.e., Tk
are excitations offy, Zy(T) the partition function of/y,  has the same dependence @as the low energy scale
andM,,, = (mlS:|n)y. A,. The flow to the isotropic strong coupling fixed point

Specifically, for the AKM we calculate (a) thE =0  holds for any initial anisotropy, corresponding o<
relaxation functionS(w) = _%M (b) the impu- « < 1, with the flow beinguniversal for eacha [16]:
rity specific healC(T) = —T9*Fimp/dT?, where the im-  the energy levels for fixedr and differentA/w. < a
purity free energy is given b¥in,(T) = —kgTInZ/Z,  may be shifted onto each other by a translationNn
and Z, is the conduction electron partition function, and[17], except for a small “transient” regioW ~ 0-10
(c) the local static susceptibilityy/(w = 0,T) corre- corresponding to high energies > A, near the cutoff
sponding to setting thg factor of the conduction elec- w.. We see that the energy level flow is uniquely specified
trons to zero. Under the equivalence, the operatgf2 by two parameters), (equivalentlyTx) which sets the
of the spin-boson model translates $9 in the AKM,  crossover scale in Fig. 1, and the dissipation strergth
so S(w) gives the relaxation function for the spin- (or equivalently the dimensionless initial coupling constant
boson problem. We extract the local static susceptibility,poJ)). The universal flow of energy levels is the origin of
Xsb(T) = —(1/B) (9> InZs, /9 €?) =0, Of the Ohmic spin- the scaling, for fixedr and arbitraryA/w. < a, in the
boson model frony/(w = 0,T) at finite 7. Finally, the thermodynamic quantities we discuss below [18].
decoupling of spin and charge degrees of freedom in the The inset in Fig. 2 shows that the specific heat curves
AKM allows identification of Fiy,, as the free energy of for @ = 0.2 and several values oA all scale onto a
the spin-boson model (with bath contribution subtracteduniversal curve corresponding to = 0.2. For different
and of C(T') as the corresponding specific heat. a one obtains distinct universal curves, (T) (Fig. 2).

The energy level flow diagram for some low lying Scaling is valid for all temperatures in the rangel <
rescaled energy states is shown in Fig. 1. We see thdy, not only at low temperatureks7T < A, = T¢. In
spin-rotational invariance, which is broken fbr # Jjat  Fig. 2, and throughout this paper, we scale the tempera-
high energies, is restored below the low energy scale dlure by a/y = 3A,/w2k3. This follows from an exact
the model, the Kondo temperatufg(J, , J)) [15], leading  result for the Wilson ratio [8,19] discussed below together
to the well known isotropic strong coupling fixed point with our definition y,(0) = 1/2A,. The specific heat
at low energies (e.g., the lowest single particle states iis linear in temperature fokg7T < A, and0 < o < 1,
Fig. 1, 1 = 0.6555, 1, = 1.976 agree with theA = 2  with a linear coefficienty in good agreement with values
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FIG. 2. Universal specific heat curvew for the Ohmic  FIG. 3. Universal curves for the static susceptibility of the
Cata CT —_ Ohmic two-state systentgT o (T), for 0 < a < 1, with y ~
two-state system for0 < a = 1.y =limr_, C(T)/T a/A, asin Fig. 2. The inset is for = 0.8 and A = 0.005

a/A, is extracted from the fixed point analysis [16]. The - =

symbols represent the temperatures at which the numericéf’)' A =0.05 (1), andA = 0.01 ().

second derivative of;,, has been calculated. The inset is for ) ] )
a=02. models [19]. For the Ohmic case, the Wilson ratio for the

. . 4 wky Ty,
spin-boson model, Ry, = limz_g 3 % L =2/a

extracted from an analysis of the strong coupling fixed19]. This is related to the Wilson ratioRykm =
point [16]. This is also expected from the Fermi liquid 4 7k Txaim

) limr_o z 5 = 2, for the AKM [8] by Ry, =
ground state of the model. We note that thé coeffi- " /0a3s(i%% c_ Ja [8] and [is] thz sdsb,cep-
cient of the specific heat changes sign closerte= 1/3, %gkm T .

I

. e ibility of the AKM (with a g factor of2 for the conduction
corresponding to the appearance, for weak dissipation, ectrons). Table | shows th&., = 2 (R = 2/a) is

damped oscillations at freque;nwr [5,6]. The peak in recovered for /w, < @ and0 < a < 1.
e et 615, b, Dynamical quanttes aiso show the uriversalty cis
for strong Ohmic dissipation. The strong dependence O&ussed_ above fgr thermodynamlc'qua_mtltles. The: 0
C(T)/T on « for weak dissibation is also seen in other elaxation functlons_S(w_), for d|SS|pat.|on strengt_h) =

a < 1 have been given in [5]. A detailed analysis shows

guantities, such as in the spin response [5]. ; : .
The universal curves for the static susceptibiljgy.(7), tbf;at at h %se:age (ir}lxe;sal_lfﬁgcgggz &gﬁrzp?;?mggggi

parametrized by the dimensionless dissipation strergth, sponding to the crossover between damped oscillations
are shown in Fig. 3. The inset shows that curves with th%\nd incoherent relaxation [5,6,20], is shown in Fig. 4
samea = 0.8 and differentA scale onto the same curve Scaling in S, (@) extends to’a’II fr’equencies) < Dy o
for ksT << Do. The thermodynamic calculation for, and is not roéstricted taw < A,. At high frequencies
becomes inaccurate at low temperatutgd;, < A, (dis- w > A,, we obtains, (@) ~ ;'7(4725(). thus " (w) ~ '
cussed in detail in [5,16]), and we have to resort to anw_(3_2ar)' and C. (1) Ea<[g O (0)]7>,~ oA
analysis about the strong coupling fixed point. This yield y G
a finite susceptibility af’ = 0 which is accurate to within
1% for0 < a < 1 (see Table | below and [16]). At high

SforD({l < t < A;! with thea dependent exponents be-
ing accurate to withi.1% for 0 < a < 1. These results
agree with short-time approximations [1] and perturbative

;empera.turtﬁsA, < kB? ;;TDO (t?)etre 'lts ? dramatic Id'f' methods [9] in this limit. More importantly, they indicate
erence in the approac Xa 0 liSiree spin value - ¢ scaling, in the sense discussed in this paper, can be
of 1/4 between the cases of weak and strong dissipation.

In the former, the free spin value is reached very rapidlyl_’,_\BLE | andR extracted from the fixed point
on increasing the temperature abave The logarithmic  paysis. ¥ Xakm, ke
terms characterizing the slow approachkigfl y.(T) to

the free spin value in the Kondo case are small for weak ¢ A=J. Xakm Y Raim
dissipation and only set in whem — 17. In this limit 1073 107° 489.2 3214.6 2.003
and forA/w. < 1, the scaling functions for the Kondo 107* 1074 4.78 30.76 2.04
problem are recovered for the specific heat and static susl/3 0.01 275.1 1806.1 2.005
ceptibility [16]. 1/3 0.1 8.61 56.4 2.01
0.7 0.01 1.90 X 10° 1.25 x 107 2.002

A universal Wilson ratio for the AKM [8] has been
proven also for the Ohmic and non-Ohmic spin-boson
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5 \ . in particular, the renormalization of the low energy scale
Ay /w. ~ (A)w.)"/1~9 and the form of the scaling func-
tions. The perspective gained above may also be use-
O ful in understanding the highly anisotropic multichannel
5 Kondo models which arise in the context of single elec-
2 o6 A20.0001 tron devices, and two-level systems in solids interacting
s 5 a=1/3 with electrons [21].
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