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Scaling and Universality in the Anisotropic Kondo Model and the Dissipative Two-State System
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(Received 6 June 1997)

Scaling and universality in the Ohmic two-state system is investigated by exploiting the equivalence
of this model to the anisotropic Kondo model. For the Ohmic two-state system, we find universal
scaling functions for the specific heatCasT d, static susceptibilityxasT d, and spin relaxation function
Sasvd, depending on the reduced temperatureTyDr (frequencyvyDr), with Dr the renormalized
tunneling frequency, and uniquely specified by the dissipation strengtha (0 , a , 1). The scaling
functions can be used to extracta andDr in experimental realizations. [S0031-9007(97)05207-1]

PACS numbers: 71.27.+a, 75.20.Hr
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The low energy effective model for a large numbe
of physical systems corresponds to a two-state syst
coupled to an environment [1,2]. Examples includ
two-level atoms coupled to the electromagnetic field
quantum optics, electron-transfer reactions in biologic
systems, and the tunneling of defects in metallic glass
[3]. The simplest model for describing such systems
the spin-boson Hamiltonian [1],
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Here the Pauli matriceŝsi , i ­ x, y, z describe the two-
level system,D is the bare tunneling matrix elemen
between the statessz ­ " and sz ­ # and e is a bias.
The environment is represented by an infinite set
harmonic oscillators (labeled by the indexi) with masses
mi and frequency spectrumvi linearly coupled to the
coordinateQ ­ 1

2 q0sz with coupling constantsCi. In
this paper we restrict ourselves to Ohmic dissipatio
for which the environment spectral functionJsvd ­
p

2

P
is

C2
i

mivi
ddsv 2 vid takes the formJsvd ­ 2pav,

for v ø vc, where vc is a high energy cutoff and
a is a dimensionless coupling constant characterizin
the strength of the dissipation. The two dimensionle
couplings of the model areDyvc anda: in this paper we
consider the region of parameter space,Dyvc ø a , 1,
which includes the interesting case of a nonadiabatic ba

The Ohmic spin-boson model has been intensive
investigated over the last ten years [1,2]. The ma
interest has been in understanding how the environme
influences the dynamics of the two-level system and
particular how dissipation destroys quantum coheren
[1,2,4–7]. Insight has been gained by exploiting th
equivalence of the Ohmic two-state system to seve
other models, including the inverse square Ising mod
[4], the anisotropic Kondo model (AKM) [5], and the
resonant level model [8–10]. The qualitative picture th
has emerged can be summarized as follows. There
a renormalized tunneling frequencyDr , which depends
1038 0031-9007y98y80(5)y1038(4)$15.00
r
em
e
in
al
es
is

t

of

n,

g
ss

th.
ly
in
nt

in
ce
e
ral
el

at
is

on a and D, and which decreases monotonically wit
increasinga for fixed D. For a ­ 0, Dr ­ D (decou-
pled system plus bath) and fora . 0 the renormalization
of this scale increases dramatically as the dissipat
strength is increased to 1:Dryvc , sDyvcd1y12a. Be-
tween a ­ 0 and a ­ 1, there is a range of differen
behavior from coherent oscillations at zero dissip
tion to damped oscillations at intermediate dissipati
strengths and eventually to incoherent relaxation
strong dissipation [1,2]. Ata . acsDd ø 1 there is
a “localization” transition atT ­ 0 corresponding to
a vanishing renormalized tunneling frequencyDr ­ 0
[11]. Here we address one aspect which has not b
dealt with in a unified way in the literature, namely, th
meaning of universality and scaling in these models,
particular, for physical properties, such as thermodynam
and dynamical quantities. We apply Wilson’s numeric
renormalization group (NRG) method to the AKM t
calculate the specific heat, static susceptibility, and d
namical susceptibility. The equivalence of the tw
models then allows us to discuss scaling and universa
in the dissipative two-state system.

The AKM [12] is given by
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where the first term represents noninteracting conduct
electrons and the second and third terms represent an
change interaction between a localized spin1y2 and the
conduction electrons with strengthJ', Jk. A local mag-
netic field, h, coupling only to the impurity spin in the
Kondo model [the last term in Eq. (2)] corresponds to
finite bias,e, in the spin-boson model. The correspo
dence betweenH and HSB, established via bosonization
[9], impliese ­ gmBh, D

vc
­ r0J', anda ­ s1 1

2d

p d2,

where tand ­ 2
pr0Jk

4 . d is the phase shift for scatter
ing of electrons from a potentialJky4 and r0 ­ 1y2D0

is the conduction electron density of states per spin
the Fermi level for a flat band of width2D0 [1,5,9]. We
© 1998 The American Physical Society
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choosevc ­ 2D0 so thatD ­ J' and measure all en-
ergies relative toD0 ­ 1. Since we are interested in de
scribing the Ohmic two-state system forDyvc ø a , 1,
this requires in the AKM thatr0J' ø 1 2 r0Jk for
r0Jk ø 1 (a ! 12 case) andr0J' ø 1ysr0Jkd2 for
r0Jk ¿ 1 (a ! 0 case). The AKM forr0J' . r0Jk

will be dealt with elsewhere, so in effect we consider on
r0J' ø minsr0Jk, ad.

We solve the AKM using Wilson’s NRG method [13].
In this procedure, a separation of energy scales is ma
by introducing a logarithmic mesh ofk points kn ­
L2n, L . 1, and transforming thecks to a basis of
Wannier statesfns [13] at the impurity, with f0s ­P

k cks , such thatHc ­
P

km ekmc
y
kmckm is tridiagonal in

k space, i.e.,Hc !
P

m

P`
n­0 L2ny2s f

y
n11mfnm 1 H.c.d.

The Hamiltonian (2) in the new basis is now diagona
ized by defining a sequence of finite size Hamiltonian
HN containing the firstN Wannier states together with
the impurity. One diagonalizes the rescaled Hamilton

ans H̄N ­ L
N21

2 HN which satisfy the recursion relation
H̄N11 ­ L1y2H̄N 1

P
ms f

y
N11mfNm 1 H.c.d. This gives

the excitations and eigenstates at a corresponding se

energy scalesvN defined byvN ­ L
2 N21

2 and allows the
calculation of dynamic quantities at frequenciesv , vN

and thermodynamic quantities at temperatureskBTN ,
vN . For example, the Fourier transform ofxst, Td ­
2iustd kfSzstd, Szs0dgl is given byxsv, Td ­ x 0sv, Td 1

ix 00sv, T d ­
1

ZN

P
m,n jMN

m,nj2
e2bem 2e2ben

v1i02sem2end , whereem, en

are excitations ofHN , ZN sT d the partition function ofHN ,
andMN

m,n ­ kmjSzjnlN .
Specifically, for the AKM we calculate (a) theT ­ 0

relaxation functionSsvd ­ 2
1
p

x 00sv1idd
v , (b) the impu-

rity specific heatCsTd ­ 2T≠2Fimpy≠T2, where the im-
purity free energy is given byFimpsTd ­ 2kBT ln ZyZ0
and Z0 is the conduction electron partition function, an
(c) the local static susceptibilityx 0sv ­ 0, Td corre-
sponding to setting theg factor of the conduction elec-
trons to zero. Under the equivalence, the operatorszy2
of the spin-boson model translates toSz in the AKM,
so Ssvd gives the relaxation function for the spin-
boson problem. We extract the local static susceptibilit
xsbsTd ­ 2s1ybd s≠2 ln Zsby≠e2de­0, of the Ohmic spin-
boson model fromx 0sv ­ 0, T d at finite T . Finally, the
decoupling of spin and charge degrees of freedom in t
AKM allows identification ofFimp as the free energy of
the spin-boson model (with bath contribution subtracte
and ofCsT d as the corresponding specific heat.

The energy level flow diagram for some low lying
rescaled energy states is shown in Fig. 1. We see t
spin-rotational invariance, which is broken forJ' fi Jk at
high energies, is restored below the low energy scale
the model, the Kondo temperatureTK sJ', Jkd [15], leading
to the well known isotropic strong coupling fixed poin
at low energies (e.g., the lowest single particle states
Fig. 1, h1 ­ 0.6555, h2 ­ 1.976 agree with theL ­ 2
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FIG. 1. The lowest rescaled energy levels for evenN itera-
tions for Jk ­ 0.443 and J' ­ 0.010 [5] corresponding to
D ­ 0.01 and a ­ 0.8 in the spin-boson model. The energy
levels are labeled by the conserved quantum numbers, to
pseudospinj [14], and totalz component of spinSz . There
is a crossover to the strong coupling fixed point at iteratio
Nc corresponding toL2sNc 21dy2 ø Dr ­ TK . Spin rotational
invariance is restored at low energies (e.g., thej ­ 0 states
with Sz ­ 0 andSz ­ 61 become degenerate), so the states a
the strong coupling fixed point can be labeled by total spinS
as indicated.

results of [13]). A detailed analysis [16] givesTK ,
sDyvcd1ys12ad with D, a related toJ', Jk as above and
J' ø Jk and a prefactor also depending ona, i.e., TK

has the same dependence ona as the low energy scale
Dr . The flow to the isotropic strong coupling fixed point
holds for any initial anisotropy, corresponding to0 ,

a , 1, with the flow beinguniversal for eacha [16]:
the energy levels for fixeda and differentDyvc ø a

may be shifted onto each other by a translation inN
[17], except for a small “transient” regionN , 0 10
corresponding to high energiesv ¿ Dr near the cutoff
vc. We see that the energy level flow is uniquely specifie
by two parameters,Dr (equivalentlyTK ) which sets the
crossover scale in Fig. 1, and the dissipation strengtha

(or equivalently the dimensionless initial coupling constan
r0Jk). The universal flow of energy levels is the origin of
the scaling, for fixeda and arbitraryDyvc ø a, in the
thermodynamic quantities we discuss below [18].

The inset in Fig. 2 shows that the specific heat curve
for a ­ 0.2 and several values ofD all scale onto a
universal curve corresponding toa ­ 0.2. For different
a one obtains distinct universal curves,CasTd (Fig. 2).
Scaling is valid for all temperatures in the rangekBT ø

D0, not only at low temperatureskBT ø Dr ­ TK . In
Fig. 2, and throughout this paper, we scale the temper
ture by ayg ­ 3Dryp2k2

B. This follows from an exact
result for the Wilson ratio [8,19] discussed below togethe
with our definition xsbs0d ­ 1y2Dr . The specific heat
is linear in temperature forkBT ø Dr and 0 , a , 1,
with a linear coefficientg in good agreement with values
1039
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FIG. 2. Universal specific heat curves,Ca sT d
gT , for the Ohmic

two-state system for0 , a , 1. g ­ limT!0 CsT dyT ,
ayDr is extracted from the fixed point analysis [16]. The
symbols represent the temperatures at which the numeri
second derivative ofFimp has been calculated. The inset is fo
a ­ 0.2.

extracted from an analysis of the strong coupling fixe
point [16]. This is also expected from the Fermi liquid
ground state of the model. We note that theT 3 coeffi-
cient of the specific heat changes sign close toa ­ 1y3,
corresponding to the appearance, for weak dissipation,
damped oscillations at frequencyDr [5,6]. The peak in
CsT dyT can be taken as a signature of a two-level sy
tem weakly coupled to bosonic excitations—it is abse
for strong Ohmic dissipation. The strong dependence
CsT dyT on a for weak dissipation is also seen in othe
quantities, such as in the spin response [5].

The universal curves for the static susceptibility,xasT d,
parametrized by the dimensionless dissipation strength,a,
are shown in Fig. 3. The inset shows that curves with th
samea ­ 0.8 and differentD scale onto the same curve
for kBT ø D0. The thermodynamic calculation forxa

becomes inaccurate at low temperatures,kBT ø Dr (dis-
cussed in detail in [5,16]), and we have to resort to a
analysis about the strong coupling fixed point. This yield
a finite susceptibility atT ­ 0 which is accurate to within
1% for 0 , a , 1 (see Table I below and [16]). At high
temperatures,Dr ø kBT ø D0, there is a dramatic dif-
ference in the approach ofkBTxasT d to its free spin value
of 1y4 between the cases of weak and strong dissipatio
In the former, the free spin value is reached very rapid
on increasing the temperature aboveDr . The logarithmic
terms characterizing the slow approach ofkBTxasT d to
the free spin value in the Kondo case are small for we
dissipation and only set in whena ! 12. In this limit
and for Dyvc ø 1, the scaling functions for the Kondo
problem are recovered for the specific heat and static s
ceptibility [16].

A universal Wilson ratio for the AKM [8] has been
proven also for the Ohmic and non-Ohmic spin-boso
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FIG. 3. Universal curves for the static susceptibility of the
Ohmic two-state system,kBTxasT d, for 0 , a , 1, with g ,
ayDr as in Fig. 2. The inset is fora ­ 0.8 and D ­ 0.005
(±), D ­ 0.05 (h), andD ­ 0.01 (¶).

models [19]. For the Ohmic case, the Wilson ratio for th
spin-boson model, Rsb ­ limT!0

4
3

p2k2
B

s gmBd2
Txsb

C ­ 2ya

[19]. This is related to the Wilson ratio,Rakm ­

limT!0
4
3

p2k2
B

s gmBd2
Txakm

C ­ 2, for the AKM [8] by Rsb ­
Rakmya sincexsb ­ xakmya [8] andxakm is the suscep-
tibility of the AKM (with a g factor of2 for the conduction
electrons). Table I shows thatRakm ­ 2 (Rsb ­ 2yad is
recovered forDyvc ø a and0 , a , 1.

Dynamical quantities also show the universality dis
cussed above for thermodynamic quantities. TheT ­ 0
relaxation functions,Ssvd, for dissipation strength0 ,

a , 1 have been given in [5]. A detailed analysis show
that these are universal functions ofvyDr parametrized
by a: S ­ SasvyDr d. The case ofa ­ 1y3, corre-
sponding to the crossover between damped oscillatio
and incoherent relaxation [5,6,20], is shown in Fig. 4
Scaling in Sasvd extends to all frequenciesv ø D0

and is not restricted tov & Dr . At high frequencies,
v ¿ Dr , we obtainSasvd , v2s422ad; thus x 00svd ,
v2s322ad and Csstd ; kfszstd, szs0dg2l , 1 2 ct2s12ad

for D21
0 ø t ø D21

r with thea dependent exponents be-
ing accurate to within0.1% for 0 , a , 1. These results
agree with short-time approximations [1] and perturbativ
methods [9] in this limit. More importantly, they indicate
that scaling, in the sense discussed in this paper, can

TABLE I. g, xakm, andRakm, extracted from the fixed point
analysis.

a D ­ J' xakm g Rakm

1023 1026 489.2 3214.6 2.003
1023 1024 4.78 30.76 2.04
1y3 0.01 275.1 1806.1 2.005
1y3 0.1 8.61 56.4 2.01
0.7 0.01 1.90 3 106 1.25 3 107 2.002
0.9 0.1 1.81 3 106 1.19 3 107 2.003
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FIG. 4. Universal curve for the relaxation functionSasvd.

expected only for fixeda. At low frequencies,v ø Dr ,
the Fermi liquid behavior ofx 00sv, T ­ 0d , av gives
Csstd , 2ayt2, with an a independentexponent for
t ¿ 1yDr [4,5,19].

Deviations from scaling, starting at high temperature
and frequencies, set in on increasingDyvc for our finite
bandwidth model. The scaling discussed here is valid f
0 , a , 1 (0 , Jk , `) as long asDyvc remains the
smallest bare energy scale.

The scaling and universality discussed above can
useful in interpreting experiments on dissipative two-sta
systems. The dissipation strengtha can be determined
by fitting the data for some quantity, such asSsvd, to
the appropriate universal scaling functionSasvd. The
low energy scale,Dr , can be extracted from the low
energy/temperature behavior [e.g., fromSasvd by using
the generalized Shiba relation [19]Sas0d ­ 2afxsbsT ­
0dg2 andxsbsT ­ 0d ­ 1y2Dr ]. In practice, this may be
difficult for strong dissipationa $ 1y3 since the scaling
functions for differenta will differ appreciably only for
kBT , v . Dr . In this case an alternative is to extrac
a andDr from g ­ p2k2

Bay3Dr andxsb ­ 1y2Dr . a

andDr can be more easily deduced for weakly dissipativ
systemsa , 1y3, for which the scaling functions depend
sensitively ona, even forkBT , v ø Dr .

To summarize, we have used the equivalence of t
Ohmic spin-boson model to the AKM in order to study
universality and scaling in these models. For anisotropi
in the AKM, 0 , J' ø Jk , 1`, corresponding to dis-
sipation strengths0 , a , 1 and bare tunneling fre-
quenciesDyvc ø a in the Ohmic spin-boson model,
the thermodynamic (dynamic) properties of these mode
are characterized by universal scaling functions ofTyDr

(vyDr ) which aredistinct functions for differenta and
are independent ofD—the latter entering only through
Dr . As in the Kondo problem, the scaling functions ar
universal with deviations from scaling at high frequencie
and temperatures arising from finiteDyvc. The dissipa-
tion strength in the Ohmic two-state system, just as th
anisotropy in the AKM, determines the essential physic
s
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in particular, the renormalization of the low energy scale
Dryvc , sDyvcd1ys12ad and the form of the scaling func-
tions. The perspective gained above may also be us
ful in understanding the highly anisotropic multichannel
Kondo models which arise in the context of single elec-
tron devices, and two-level systems in solids interacting
with electrons [21].
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