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Scarred and Chaotic Field Distributions in a Three-Dimensional Sinai-Microwave Resonator

U. Dörr, H.-J. Stöckmann, M. Barth, and U. Kuhl
Fachbereich Physik, Universität Marburg, D-35032 Marburg, Germany

(Received 3 June 1997)

For about 200 eigenfrequencies of a Sinai-shaped three-dimensional microwave resonator electromag-
netic field distributions were mapped by measuring the eigenfrequency shiftDn as a function of the
position of a spherical perturbing bead. Both regular and chaotic field patterns were found. For the
chaotic field distributions all components of the electromagnetic field were found to be uncorrelated and
Gaussian distributed. [S0031-9007(97)04780-7]

PACS numbers: 05.45.+b, 03.65.Sq
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Chaotic billiards are frequently used models to stud
the quantum mechanical properties of classically chao
systems. There exists a reasonable large number of c
culations (see, e.g., Refs. [1–4]) as well as microwa
analog experiments [5–7]. In all cases the studied spe
tral properties, in particular level spacing distribution an
spectral rigidity, were in accordance with the prediction
of random matrix theory as was conjectured by Bohiga
Giannoni, and Schmit in a ground breaking paper [8]. E
ceptions were only parts of the spectra where eigenvalu
associated with bouncing-ball orbits disturbed the unive
sal behavior [4,7]. The bouncing balls can be taken in
account with the help of the periodic orbit theory wher
they give rise to additional contributions to the Gutzwille
trace formula [4].

All calculations and experiments mentioned above ha
been performed in planar billiards. In three-dimension
systems the available information is still scarce. On th
theoretical side we are aware of only one quantum m
chanical calculation by Primack and Smilansky in a thre
dimensional symmetry-reduced Sinai billiard [9]. Thei
main object was the analysis of the different bouncing-ba
contributions to the spectra, in particular with respect
the qualitative differences between two and three dime
sions. Frank and Eckhardt calculated the eigenfreque
cies of three-dimensional integrable microwave cavitie
also with the main emphasis on periodic orbit theory [10
In accordance with a prediction by Balian and Duplantie
[11] they found that because of the two possible polar
zations of the electromagnetic waves only orbits with a
even number of reflections contribute to the spectra.

On the experimental side there are the acoustic res
nance experiments by Ellegaardet al. [12] in quartz
blocks shaped as three-dimensional Sinai billiards and t
microwave experiments by Deuset al. [13] and Alt et al.
[14] in three-dimensional chaotic cavities. In all cases th
predictions of random matrix theory were verified thoug
in these experiments, in contrast to two-dimension
microwave resonators, the correspondence to quant
mechanics is no longer given.

The fact that random matrix theory can be applied also
the spectra of three-dimensional microwave resonators
by no means trivial. After all the Schrödinger equation
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an equation for the wave functions, whereas in the Maxwe
equations the six field componentsEx, Ey , Ez, Bx , By ,
andBz are coupled in a complicated way. It is therefor
desirable to have information not only on the spectr
but also on the field distributions, and to see wheth
the phenomenology known from scalar fields is foun
here, too.

To measure such field distributions we applied the pe
turbing bead method used already to map wave fun
tions in two-dimensional cavities [6] to an octant of a
three-dimensional Sinai billiard, built as a copper bo
of inside dimensionslx ­ 96 mm, ly ­ 82 mm, lz ­
106 mm with an octant of a sphere of radiusr ­ 39 mm
inserted (see Fig. 1). The microwaves were fed into th
resonator through an antenna positioned in the center
a wall (the right one in Fig. 1). A metallic sphere of ra
diusR ­ 5.5 mm, supported by a thread, could be move
within the volume by changing the length of the threa
and shifting the top plate. By varying the position of the
bead on a three-dimensional rectangular array in steps
12, 10, and 2.4 mm in thex, y, andz directions, respec-
tively, about 2000 different spectra were taken, each
them containing more than 200 eigenfrequencies.

In the measurement the fact was used that the prese
of the bead gives rise to a shiftDn of the eigenfrequencies
from which information on the fields at the position o
the bead can be obtained. Though the technique has b
known for a long time [15] the essentials shall be sketche
here to make the Letter self-explanatory. LetEn0 andEn

be the electric fields for an eigenresonance without a
in the presence of the bead. Both fields obey Helmhol
equations

sD 1 k2
n0

dEn0 ­ 0, sD 1 k2
ndEn ­ 0 , (1)

which have to be solved with the boundary conditio
sEn0 dk ­ sEndk ­ 0 on the surface of the cavity. Com-
bination of the two equations and application of Green
theorem in the usual way yieldZ

sEn='En0 2 En0 ='End dS

­ sk2
n 2 k2

n0
d
Z

EnEn0 dV , (2)
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where the integral on the left hand side is over the surfa
of the bead, and=' denotes the normal derivative directe
into the bead. The integral on the right hand side is ov
the volume of the cavity excluding the bead. In the ne
step we writeEn ­ En0 1 dn and determinedn such that
all electromagnetic boundary conditions are obeyed. T
result depends on the shape of the bead. For circular be
as applied here, all necessary formulas can be found, e
in Chap. 16 of Ref. [16]. The result is

k2
n 2 k2

n0

k2
n

­ 2
Dnn

nn

­
3
2

VRR
jEn0 j

2 dV
s22jEn0 j

2 1 jBn0 j
2d

(3)

in accordance with Eq. (14) in Ref. [15]. HereVR ­
4p

3 R3 is the volume of the bead and
R°

En0

¢
2 dV is the total

electromagnetic energy in the resonator. For spheri
beads thus only the field combination22jEj2 1 jBj2

can be obtained from the frequency shiftDn. Other
combinations are in principle available by using differen
bead shapes.

In this way resonance depthsan and frequency shifts
Dnn were measured for about 200 eigenfrequencies
the range from 2 to 10 GHz. In the discussion of th
resonance depth we can be short. Thean are proportional
to E2

nk, where Enk is the component of the electric
field parallel to the antenna at the antenna positi
[17]. Here we found a Porter-Thomas distribution fo
the resonance depths just as in two dimensions [18]; s
Fig. 2. This shows that theEnk are Gaussian distributed
and uncorrelated for different eigenfrequencies. It shou
be noted that the situation is different if the distribution o
E2

nk, or jCnj2 in quantummechanical systems, is studie
wing
quency
FIG. 1. Electromagnetic field distributions in a three-dimensional Sinai microwave billiard for three eigenfrequencies sho
bouncing-ball (a), scarred (b), and chaotic (c) field distributions. The shaded surfaces correspond to points of constant fre
shift Dn , 22E2 1 B2 (see text). The eigenfrequencies of the unshifted modes are 5.208, 2.897, and 8.293 GHz.
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as a function of position for one single resonance
For this case significant deviations from Porter-Thoma
distributions have been found for scarred and localize
field distributions [19,20].

The main concern of this paper is the frequency shif
Dn as a function of position for the individual eigenfre-
quencies. Figure 1 shows three typical examples. Th
shaded surfaces correspond to surfaces of constant fr
quency shifts, i.e., constant22jEj2 1 jBj2. TheDn val-
ues associated with the shaded surfaces are marked
Fig. 3 where the distribution functionPsDnd of frequency
shifts for the three eigenfrequencies are plotted. Thoug
the measurement does not yield the field componen
separately but only a combination, nevertheless Fig.
gives a suggestive impression of the field distributions
Obviously the eigenfrequency shown in Fig. 1(a) corre
sponds to a standing wave between two parallel face
of the billiard. It can thus be considered as a three
dimensional analog of a bouncing-ball wave function.
The field distribution shown in Fig. 1(b), on the other
hand, has all features of a scar associated with a period
orbit of the shape of a diamond. There are large frequenc
shifts along the orbit, and small or no shifts elsewhere
To corroborate the scar hypothesis a quantitative crite
rion, as it was developed by Agam and Fishman [21] fo
the quantum mechanical case, would be desirable. Unfo
tunately, however, such a criterion does not yet exist fo
three-dimensional electromagnetic cavities. Figure 1(c
finally shows a chaotically looking field distribution with
no obvious association with a periodic orbit.

To get a quantitative tool to discriminate between
chaotic and regular field distributions, we take as a
hypothesis that for chaotic distributions all six field
components are uncorrelated and Gaussian distribute
1031
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FIG. 2. Distribution of resonance depths. The dashed li
corresponds to a Porter-Thomas distribution.

Then the distribution functionPsDnd should be given by

PsDnd ­
Z

dsDn 1 2jEj2 2 jBj2d

3

3Y
i­0

psEid dEipsBid dBi (4)

where
psxd ­

p
ayp e2ax2

. (5)
The integrations are easily carried out with the result

PsDnd ­

p
2 a2

3p
jDnj exp

µ
2

a

4
Dn

∂
K1

µ
3
4

ajDnj

∂
,

(6)
whereK1sxd is a modified Bessel function. Equation (6
may be considered a generalized Porter-Thomas distri
tion for the case of electromagnetic eigenfrequency fie
distributions. Figure 3 shows the experimental frequenc
shift distributions, where the solid line corresponds to th
expected behavior (6) for chaotic field distributions. Fo
the comparison the first three moments of experimen
and theoretical curves were adjusted to each other.

An inspection of the figure shows that for the chaot
cally looking field distribution in Fig. 1(c) the obtained
PsDnd is described perfectly well by Eq. (6). This show
that the hypothesis of uncorrelated Gaussian distribu
field components is correct, irrespective of their stron
mutual coupling via the Maxwell equations. For the defi
nitely nonchaotic field patterns depicted in Figs. 1(
and 1(b), on the other hand, the foundDn distribution
deviates, not surprisingly, significantly from the behavio
described by Eq. (6). A similar situation is found fo
eigenfunctions of the stadium billiard, where bouncin
balls and scars lead to deviations from the otherwi
observed Gaussian distributions of the wave functio
amplitudes [3]. Equation (6) is therefore indeed suite
to check whether a field distribution is chaotic or no
By this we found that about 45% of the eigenfrequenc
distributions are chaotic with a significance of 68% wit
a tendency for this fraction to increase with increasin
frequency.

The range of validity of the distribution function (6)
must end, even for chaotic distributions, close to th
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FIG. 3. Frequency shift distributions for the three eigenmode
shown in Fig. 1. The solid line corresponds to the theoretic
expectation for chaotic field distributions. The frequency shift
corresponding to the shaded surfaces in Fig. 1 are marked
vertical dashed lines.

surfaces of the resonator. Here the boundary conditio
demand that the electric field vector is normal, and th
magnetic field vector is parallel to the surfaces, i.e
there are now only three independent field componen
Performing again the integrations in Eq. (4), but now
only over oneE and twoB components, one obtains the
frequency shift distribution

PsDnd ­
a

2
p

3
e2aDn

"
1 2 Qs2Dnd erf

√s
3ajDnj

2

!#
,

(7)

which should hold for bead positions close to the surfac
HereQsxd is the Heaviside step function.

To check this prediction we took all field distributions
found to be chaotic with the help of the above criterion
and calculated the frequency shift distributions of the su
face elements alone. Figure 4 shows the obtained h
tograms for three frequency regions, where the thickne
of the surface was fixed tod ­ 10 mm. As the surface
thickness should be properly expressed in units of th
wavelengthl, the effective thickness increases with fre
quency, and one expects thus with increasing frequen
a gradual change from the surface to the volume di
tribution. Exactly this behavior is found. In Fig. 4(a)
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FIG. 4. Frequency shift distribution functionPsDnd for bead
positions closer than 10 mm to the resonator walls. T
histograms were obtained by superimposing the results fro
all eigenfrequencies with chaotic field distribution in the rang
(a) 3–5.5 GHz, (b) 5.5–7 GHz, and (c) 7–10 GHz. Th
dashed and the dash-dotted lines correspond to the theore
expectations for the surface and the volume, respectively.

corresponding todyl in the range 0.1 to 0.18 the ex-
perimental distribution is rather close to the surface d
tribution (7), though the sharp cusp predicted by theory
not found in the experiment. In Fig. 4(c) withdyl in the
range 0.23 to 0.33 the found distribution approaches
ready the volume distribution (6). An analogous behavi
is found upon variation ofd (not shown).

We have shown that the perturbing bead method
well suited to obtain information on electromagnetic fiel
distributions in three-dimensional microwave cavitie
For the chaotic field distributions all field component
were found to be uncorrelated Gaussian distributed
spite of their strong coupling via the Maxwell equation
This has been demonstrated on three levels of increas
complexity. The distribution of resonance depths show
that the E component parallel to the antenna wire i
Gaussian distributed. From theDn distribution in the
surface one concludes that theE component perpendicular
to the surface and the twoB components in the surface are
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uncorrelated Gaussian distributed, whereas from theDn

distribution in the volume the same is found for altogeth
six E and B components. One may wonder whethe
these findings can be understood as for scalar fields [
by assuming that the field components at one point c
be described by a random superposition of plane wav
This is indeed the case. It is rather simple to show w
the help of the central limit theorem that a superpositi
of plane electromagnetic waves entering from rando
directions with randomly distributed amplitudes yield
exactly the experimentally found behavior.
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