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Scarred and Chaotic Field Distributions in a Three-Dimensional Sinai-Microwave Resonator
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For about 200 eigenfrequencies of a Sinai-shaped three-dimensional microwave resonator electromag-
netic field distributions were mapped by measuring the eigenfrequencyfshifis a function of the
position of a spherical perturbing bead. Both regular and chaotic field patterns were found. For the
chaotic field distributions all components of the electromagnetic field were found to be uncorrelated and
Gaussian distributed. [S0031-9007(97)04780-7]

PACS numbers: 05.45.+b, 03.65.Sq

Chaotic billiards are frequently used models to studyan equation for the wave functions, whereas in the Maxwell
the quantum mechanical properties of classically chaotiequations the six field componenks, E,, E;, B,, By,
systems. There exists a reasonable large number of cand B, are coupled in a complicated way. It is therefore
culations (see, e.g., Refs. [1-4]) as well as microwavelesirable to have information not only on the spectra
analog experiments [5-7]. In all cases the studied spedut also on the field distributions, and to see whether
tral properties, in particular level spacing distribution andthe phenomenology known from scalar fields is found
spectral rigidity, were in accordance with the predictionshere, too.
of random matrix theory as was conjectured by Bohigas, To measure such field distributions we applied the per-
Giannoni, and Schmit in a ground breaking paper [8]. Exturbing bead method used already to map wave func-
ceptions were only parts of the spectra where eigenvalugfns in two-dimensional cavities [6] to an octant of a
associated with bouncing-ball orbits disturbed the univerthree-dimensional Sinai billiard, built as a copper box
sal behavior [4,7]. The bouncing balls can be taken intef inside dimensions/, = 96 mm, [, = 82 mm, [, =
account with the help of the periodic orbit theory where106 mm with an octant of a sphere of radins= 39 mm
they give rise to additional contributions to the Gutzwiller inserted (see Fig. 1). The microwaves were fed into the
trace formula [4]. resonator through an antenna positioned in the center of

All calculations and experiments mentioned above hava wall (the right one in Fig. 1). A metallic sphere of ra-
been performed in planar billiards. In three-dimensionadiusR = 5.5 mm, supported by a thread, could be moved
systems the available information is still scarce. On thewithin the volume by changing the length of the thread
theoretical side we are aware of only one quantum meand shifting the top plate. By varying the position of the
chanical calculation by Primack and Smilansky in a threebead on a three-dimensional rectangular array in steps of
dimensional symmetry-reduced Sinai billiard [9]. Their 12, 10, and 2.4 mm in the, y, andz directions, respec-
main object was the analysis of the different bouncing-baltively, about 2000 different spectra were taken, each of
contributions to the spectra, in particular with respect tahem containing more than 200 eigenfrequencies.
the qualitative differences between two and three dimen- In the measurement the fact was used that the presence
sions. Frank and Eckhardt calculated the eigenfrequersf the bead gives rise to a shiftv of the eigenfrequencies
cies of three-dimensional integrable microwave cavitiesfrom which information on the fields at the position of
also with the main emphasis on periodic orbit theory [10].the bead can be obtained. Though the technique has been
In accordance with a prediction by Balian and Duplantierknown for a long time [15] the essentials shall be sketched
[11] they found that because of the two possible polarihere to make the Letter self-explanatory. Egt andE,
zations of the electromagnetic waves only orbits with arbe the electric fields for an eigenresonance without and
even number of reflections contribute to the spectra. in the presence of the bead. Both fields obey Helmholtz

On the experimental side there are the acoustic res@quations
nance experiments by Ellegaaet al.[12] in quartz ) )
blocks shaped as three-dimensional Sinai billiards and the A+ k)E, =0, (A +k)E, =0, (1)
microwave experiments by Dees al. [13] and Alt et al.
[14] in three-dimensional chaotic cavities. In all cases th
predictions of random matrix theory were verified though
in these experiments, in contrast to two-dimension
microwave resonators, the correspondence to quantum

which have to be solved with the boundary condition
E,) = (E,); = 0 on the surface of the cavity. Com-
ination of the two equations and application of Green’s
heorem in the usual way yield

mechanics is no longer given.
The fact that random matrix theory can be applied also to ](E"VLEHO — E,V.E,)dS
the spectra of three-dimensional microwave resonators is ) )
by no means trivial. After all the Schrédinger equation is =k — K& )f E,E, dV, (2)
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where the integral on the left hand side is over the surfacas a function of position for one single resonance.
of the bead, an¥ ;, denotes the normal derivative directed For this case significant deviations from Porter-Thomas
into the bead. The integral on the right hand side is ovedistributions have been found for scarred and localized
the volume of the cavity excluding the bead. In the nexffield distributions [19,20].

step we writeE, = E,, + 8, and determin&,, such that The main concern of this paper is the frequency shift
all electromagnetic boundary conditions are obeyed. Thé&r as a function of position for the individual eigenfre-
result depends on the shape of the bead. For circular beadgjencies. Figure 1 shows three typical examples. The
as applied here, all necessary formulas can be found, e.ghaded surfaces correspond to surfaces of constant fre-

in Chap. 16 of Ref. [16]. The result is quency shifts, i.e., constant2|E|> + |B|>. TheAv val-
) ) ues associated with the shaded surfaces are marked in
kn — ki, -9 Avy Fig. 3 where the distribution functioR(A») of frequency
ka Vn 3 shifts for the three eigenfrequencies are plotted. Though
3 Vi 5 5 3) the measurement does not yield the field components
=5 W(_HEM + By, |%) separately but only a combination, nevertheless Fig. 1
. _ o _ gives a suggestive impression of the field distributions.
in accordance with Eq. (14) in Ref. [15]. HeMé =  Obviously the eigenfrequency shown in Fig. 1(a) corre-

7 R%is the volume of the bead anE,,,)? 4V isthe total ~ sponds to a standing wave between two parallel faces
electromagnetic energy in the resonator. For sphericalf the billiard. It can thus be considered as a three-
beads thus only the field combination2|E|*> + |B|>  dimensional analog of a bouncing-ball wave function.
can be obtained from the frequency shiftv. Other The field distribution shown in Fig. 1(b), on the other
combinations are in principle available by using differenthand, has all features of a scar associated with a periodic
bead shapes. orbit of the shape of a diamond. There are large frequency
In this way resonance deptlas and frequency shifts shifts along the orbit, and small or no shifts elsewhere.
Av, were measured for about 200 eigenfrequencies iiTo corroborate the scar hypothesis a quantitative crite-
the range from 2 to 10 GHz. In the discussion of therion, as it was developed by Agam and Fishman [21] for
resonance depth we can be short. There proportional the quantum mechanical case, would be desirable. Unfor-
to Eﬁ”, where E, is the component of the electric tunately, however, such a criterion does not yet exist for
field parallel to the antenna at the antenna positionhree-dimensional electromagnetic cavities. Figure 1(c)
[17]. Here we found a Porter-Thomas distribution forfinally shows a chaotically looking field distribution with
the resonance depths just as in two dimensions [18]; se® obvious association with a periodic orbit.
Fig. 2. This shows that thg&, are Gaussian distributed To get a quantitative tool to discriminate between
and uncorrelated for different eigenfrequencies. It shoulethaotic and regular field distributions, we take as a
be noted that the situation is different if the distribution of hypothesis that for chaotic distributions all six field
EZ, or |'¥,]? in quantummechanical systems, is studiedcomponents are uncorrelated and Gaussian distributed.

n|lr

FIG. 1. Electromagnetic field distributions in a three-dimensional Sinai microwave billiard for three eigenfrequencies showing
bouncing-ball (a), scarred (b), and chaotic (c) field distributions. The shaded surfaces correspond to points of constant frequency
shift Av ~ —2E? + B? (see text). The eigenfrequencies of the unshifted modes are 5.208, 2.897, and 8.293 GHz.
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The integrations are easily carried out with the result
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T
FIG. 3. Frequency shift distributions for the three eigenmodes

) o ) _(6) shown in Fig. 1. The solid line corresponds to the theoretical
whereK(x) is a modified Bessel function. Equation (6) expectation for chaotic field distributions. The frequency shifts

may be considered a generalized Porter-Thomas distribworresponding to the shaded surfaces in Fig. 1 are marked by

tion for the case of electromagnetic eigenfrequency fiel¢yertical dashed lines.

distributions. Figure 3 shows the experimental frequency-

shift distributions, where the solid line corresponds to thesurfaces of the resonator. Here the boundary conditions

expected behavior (6) for chaotic field distributions. Fordemand that the electric field vector is normal, and the

the comparison the first three moments of experimentainagnetic field vector is parallel to the surfaces, i.e.,

and theoretical curves were adjusted to each other. there are now only three independent field components.
An inspection of the figure shows that for the chaoti-Performing again the integrations in Eq. (4), but now

cally looking field distribution in Fig. 1(c) the obtained only over oneE and twoB components, one obtains the

P(Av) is described perfectly well by Eq. (6). This shows frequency shift distribution

that the hypothesis of uncorrelated Gaussian distributed

field components is correct, irrespective of their strong O A, 3a|Av|

mutual coupling via the Maxwell equations. For the defi—P(AV) 23 ¢ |:1 — 6(-Av) erf( 2 >:|

nitely nonchaotic field patterns depicted in Figs. 1(a) 7

and 1(b), on the other hand, the foudd  distribution

deviates, not surprisingly, significantly from the behaviorwhich should hold for bead positions close to the surface.

described by Eq. (6). A similar situation is found for Here ®(x) is the Heaviside step function.

eigenfunctions of the stadium billiard, where bouncing To check this prediction we took all field distributions

balls and scars lead to deviations from the otherwisdound to be chaotic with the help of the above criterion

observed Gaussian distributions of the wave functiorand calculated the frequency shift distributions of the sur-

amplitudes [3]. Equation (6) is therefore indeed suitedace elements alone. Figure 4 shows the obtained his-

to check whether a field distribution is chaotic or not.tograms for three frequency regions, where the thickness

By this we found that about 45% of the eigenfrequencyof the surface was fixed td = 10 mm. As the surface

distributions are chaotic with a significance of 68% withthickness should be properly expressed in units of the

a tendency for this fraction to increase with increasingwavelengtha, the effective thickness increases with fre-

frequency. quency, and one expects thus with increasing frequency
The range of validity of the distribution function (6) a gradual change from the surface to the volume dis-

must end, even for chaotic distributions, close to thdribution. Exactly this behavior is found. In Fig. 4(a)

1032




VOLUME 80, NUMBER 5 PHYSICAL REVIEW LETTERS 2 EBRUARY 1998

1.00 uncorrelated Gaussian distributed, whereas fromAfe
distribution in the volume the same is found for altogether
075 i six E and B components. One may wonder whether
these findings can be understood as for scalar fields [22]
0.50 ] by assuming that the field components at one point can
0.25 } be described by a random superposition of plane waves.
’ This is indeed the case. It is rather simple to show with
0.00 the help of the central limit theorem that a superposition
of plane electromagnetic waves entering from random
0.75 i directions with randomly distributed amplitudes yields
exactly the experimentally found behavior.
3 050 i The experiments were supported by the Deutsche
& Forschungsgemeinschaft via the Sonderforschungsbereich
0.25 . 185 “Nichtlineare Dynamik.” Numerous discussions with
B. Eckhardt, Marburg, on various stages of the experiment
0.00 are gratefully acknowledged.
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