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Output of a Pulsed Atom Laser
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We study the output properties of a pulsed atom laser consisting of an interacting Bose-Einstein
condensate in a magnetic trap and an additional rf field transferring atoms to an untrapped Zeeman
sublevel. For weak output coupling we calculate the dynamics of the decaying condensate population,
of its chemical potential, and the velocity of the output atoms analytically. [S0031-9007(97)04914-4]

PACS numbers: 03.75.Fi, 05.30.Jp

The experimental breakthrough to Bose-Einstein conelosest approximation of a cw atom laser by a pulsed one
densation with small numbers of atoms in magnetic trapsan be reached in the limit of a weak coupling rf field. In
[1] has raised much interest in the properties of mesoscopitis case we are able to describe the decay of the trapped
gquantum gases. Bose-Einstein condensates with atoms irtandensate and its energy width analytically. Previous cal-
single magnetic sublevel have been studied experimentaligulations addressed the opposite limit of strong coupling
and theoretically. Recently, interference between two inby numerical calculations [9] or neglected the crucial in-
dependent Bose-Einstein condensates convincingly provetlence of atom-atom interactions [10].
their macroscopic coherence [2,3]. Moreover, the laser- The output coupler consists of a monochromatic reso-
like coherence of the atoms is preserved in the presence ont rf field of frequency,; transferring?Na atoms into
a matter-wave splitter based on rf transitions pumping théhe F = 1 hyperfine state from the trapped = —1 into
atoms into untrapped magnetic sublevels [4]. These statébe untrappedn = 0 and the repelledn = 1 magnetic
are either strong-field seeking or have no magnetic mosublevels. For simplicity an isotropic harmonic trap po-
ment at all, and leave the trap. Alternatively, optical Ra-tential V_;(r) = Voir + Mw3r?/2, Vii(r) = —V_(r)
man transitions can be used for the transfer [5]. A schemand V,(r) = 0 are assumed while effects of gravity are
consisting of a coherent source of atoms and a controllableeglected.
output coupler is suitably named “atom laser” [6—8] in an The three coupled coherent matter waves are described
obvious analogy. by a three-component Gross-Pitaevskii equation (GPE)

Continuing this analogy, one can distinguish between avith resonant excitation in rotating wave approximation
cw laser, based on continuous refilling of the condensatdirst studied for a generic two-level system in Ref. [9].
and a pulsed atom laser, where the condensate is periodi-In the following we adopt the point of view afponta-
cally refilled and slowly released, similar to [4]. Whereas aneouslybroken gauge symmetry for a Bose gas initially at
continuous wave atom laser has been studied only theorettero temperature. The system of equations for the macro-
cally [6—8], current Bose-Einstein condensation experiscopic wave functiony,,(t) = e~ "#(iJ;,(r)) in rotating
ments are limited to the pulsed mode of operation. T|hewave approximation fom,m’ € {—1,0, +1} now reads
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Here, we have replaced the atomic density by the modulus 400
of the wave function
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At zero magnetic field the symmetrizedwave scat- % ]
tering matrix elementsU,,,, = 4mwh?a,./M for an = 100 E E
elastic collision of a pair of atoms in the sublevels ]
m,m' € {—1,0,+1} are all nearly equal t& = 53a, 0 , ‘ , . ,
(ap is the Bohr radius) according to preliminary calcu- -100 50 0 50 100
lations of Tiesinga and Julienne [11]. Since the steady x [um]

state operation depends mainly on the initial CondenT:IG_ 1. The effective potential_,(r) — Vo + Ui, (r. 1)

sate mean field, we assume in the following a diagonaliays spatially independent and equal fdr) inside the
scattering matrixa,,,» = 6..sa for simplicity. Conse- condensate for times = 0 ms (upper line) and = 670 ms
quently, the Hartree mean-field potential for each spir(lower line); the parabola describes the external potential

component is equal to the total atom densiyfr,s)) V-1(r) — o [I'El'his(?’s)f]m\ivs tfhe lvfé‘"dFy of th$hThorT|as-Fermi
T _ 2— . approximation [E=q. also 1or later ttimes with small coupling

multiplied by U = 4wh*a/M. The Cpupllng constant strength(). The numerical simulation was carried out far=

hQ = guson|Bl/+/2 denotes the Rabi frequency due to |, ST, Ny =25 X 105, A(0) = 3100 5!, w, = 27 X 19 Hz,

the rf field B for a Landé factogr. andw,, = 27 X 250 Hz in a quasi-one-dimensional setup.

The initial condition is chosen as the solution of the
stationary GPE for the trappdah = —1) condensate in
the absence of the rf field, i.&) = 0 in Eq. (1). In the
Thomas-Fermi approximation it reads

71,0 = maf 0o Vo) ol ®

-1 (r, 0,
Here, the initial chemical potentigk, follows from the )
normalization condition [see Eq. (8)]. For a small cou-
pling strength({) <« wr) the process of atoms leaking where iA(r) = hwy — V_1(r). The maximum ampli-
out of the resonance points is faster than the Rabi osciktude of the Rabi oscillations is located i, determined
lations. Therefore the coupling into state= +1 can be by the resonance condition
neglected, since its population grows proportionaf}t. AA ~0 5
In the following only the states: = —1 andm = 0 are (rres) = 0. )
considered. After switching on the coupling due to the rfThus, the main contribution to the output coupling stems
field, initial oscillations die out quickly, because the un-from a small shell around that resonance radiys =
trapped atoms leak out of the trap within less than On%/ZhA(O)/(mw%).

Rabi cycle. Other condensate atoms move into the reso* The time derivative of the density gives the density

nance area replacing the leaving ones. Eventually a qugransition rate. The total transition rate is obtained by
sistationary state is reached, i.e., the= —1 condensate j egrating the position-dependent rate over the conden-
wave function decays slowly without oscillations while the ¢4ia volume. The transition rate is negligible outside a
atoms coupled out of the condensate are expelled due Qi ,te resonance shell and strongly peaked within that
the mean-field potential and form a steady current [12]gpq. Expanding the position-dependent detunig)

A numerical solution of the two-component GPE showsy first order, one obtains the time-dependent transition
the uniform decay of the trapped condensate. In Fig. Jprobability

the sum of external and mean-field potentiglg (r, ) =

V_i(r) = Voir + Ul—1(r,1)|* is plotted. As this sum _ 1 ]“’ 2 0 5 )

is nearly spatially independent inside the condensate, a 0 = |- 1(rres, 0)|2 Jo amr ot o, O dr
description in terms of the Thomas-Fermi approximation

two-component GPE corresponding to Eg. (1) and solve
for the output density distribution

402 sirt[3/A2(r) + 4Q7 1]

AX(r) + 402

Jo(r, D> =

with the time-dependent chemical potential:) appears =~ dqrr2 ] 202 SIM(VA (re'r? + 407 1)]

to be adequate. In the following we present an analyti- ) VA (rres)?r? + 402

cal calculation of the time-dependent output intensity in 02

this quasistationary regime, assuming a three dimensional = 87 i, Ard) Jo(2Q1). (6)
Ires

isotropic harmonic trap.

We first calculate the raté’ of transitions from the The calculation of the above rafé(r) does not account
condensate into the output. In the spirit of the Thomasfor the losses due to the leaving atoms. However, a rate
Fermi approximation we neglect the kinetic energy in aequation allowing for these losses can be derived in the
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limit of weak coupling by using the perturbational rate solution of the stationary GPE (cf. Fig. 1) with a slowly

(t<<7/Q) varying atom numben (z),
v 2HA(0)
L= 8 h0 oty ) VO = T u@FR /0. (0)

with A/(rres) = 2A(O)/rres- . . .
Because of the spatial localization of the output cou-The condensate density at the resonance points is then
pling, the decay of the condensate population, given by

N(@t) = f d3r|¢Zf71(r,t)|2, N(©O) =Ny, (8) |§Z—1(rreSst)|2 = [u(t) — RA(0)]/U . (11)

. Inserting this into the decay law (9) we obtain a non-
depends solely on the density of the atoms around thgnear differential equation for the decay of the chemical

resonance shell with radiug. potential,
dN(1) ~ 2
—— = —TlJ_ D7 9 —
di |¢ 1(Fres )] 9 i,u + a M iA(0) =0, (12)

dl /‘L3/2
In the quasistationary regime we assume the shape of
the condensate density being equal to the Thomas-Fermiherea = 3T'(M w%)3/227 /271, Integration yields

w(0)

[2hA(0)M1/2 + %,ﬁ/z — 2[AA(0)T? arcoth\/,u/hA(O)} = at. (13)

(1)
I

With Eq. (10) this yields additionally the time evolution width § E of a pulsed atom laser, in analogy to the natural
for the number of trapped atomé(r) as well as the flux linewidth of spontaneously emitted photons. It can be
and the velocity of the untrapped atoms. calculated approximately by describing the initial stage of

During the depopulation of the condensate the chemithe output coupling process by an exponential decay of the
cal potential and the spatial extension of the condensateondensate population,
decrease until the resonance points lie on the surface of N
the shrinked condensate. At this point the flux out of the anv -\ _ _
condensate vanishes, becalige, (1, 1)|*> = 0, and the dt ® LooplN (D) = N(2)]. (15)
chemical potential and the number of atoms remaining in

the trap become constant in time, The ratel’,,, results in an energy uncertainty,
2
p(®) = KA(0). (14) _ _ 15 5, Q2A0)
O0E = hl'yop 5 ah —,u(o)3/2 . (16)

As an example, we chose a small valua\@d) and a trap
frequencywt = 27 X 106 Hz, the geometric mean of the Whereas the transition rafé does not depend op and
values given in Ref. [4]. The resulting time evolution of Ny, the population decay rat€,,, does so due to its
the system variables according to the nonlinear differentiatiependence og—(r,0). We thus find a dependence of
equation is shown in Figs. 2(a) and 2(b). The chemicathe energy width on the condensate number,
potentialu(r) and the number of trapped atoms reach their 5
steady state after roughly 25 sec. Correspondingly the flux SE Q°VA(©) ' (17)
and the velocity of the untrapped atoms decrease to zero NS/S
[cf. Figs. 2(c) and 2(d)]. The corresponding calculations
were also carried out in one dimension in order to compar&he natural energy width becomes narrower for weaker
the analytical expressions with numerical simulations ofcoupling strengtlf, i.e., a slower output coupling process.
the full coupled GPE's. The results showed excellenfThe same effect can be achieved by choosing a smaller
agreement (less than 5% deviation). detuningA(0) which causes the sphere of the resonance
The finite duration of the atom pulse ejected from thepoints to shrink towards the center of the condensate. The
trap leads to a finite energy width of both the condensatenergy width can be further reduced by starting out from a
and the output beam that is called here tla¢ural energy  condensate with a large populatidg.
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The output pulse can last for up to the order of 100 sec
such that the causes of phase fluctuation which would also
influence a cw-atom laser have to be considered as well.
Additional broadening of the energy width of the output
beam is caused by thermal excitations of the condensate
wave function and technical noise of the output coupling
mechanism such as fluctuations of the confining magnetic
field. Thus, thenatural energy widthcalculated above
has to be understood as a lower limit. A comprehensive
theoretical description of the fluctuations of the condensate
wave function, particularly of its phase, is beyond the
scope of this Letter.

It has been shown in [8] that the temporal decay of phase
correlations transforms into a decay of the spatial coher-
ence of the output beam along the mean classical trajectory
that is being passed during the according correlation time
of the condensate phase.

At present, random variations of the bias magnetic field
at the mGauss level are among the most important experi-
mental limitations to the coherence properties of the out-
put, prior to fluctuations of the condensate wave function.
They might contribute to a phase diffusion of the output
beam in the 100 Hz range.

Pulsed atom lasers will play an important role in creating
coherent matter waves as the size of the condensate may
be largely increased in future experiments. The results
of this Letter are based on the solutions of the coupled
Gross-Pitaevskii equations and allow us to extract the
relevant properties of the output analytically. The velocity
of the untrapped atoms depends on the slowly decaying
population of the trapped condensate fraction, leading to a
slow chirp of the output frequency. While this frequency
chirp might be compensated by a variation of the rf-
field frequency, other sources of spectral width, such as
fluctuations of the confining magnetic field, are surely

FIG. 2. Time evolution in the Thomas-Fermi approximation; more difficult to overcome.
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