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Output of a Pulsed Atom Laser
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We study the output properties of a pulsed atom laser consisting of an interacting Bose-Einstein
condensate in a magnetic trap and an additional rf field transferring atoms to an untrapped Zeema
sublevel. For weak output coupling we calculate the dynamics of the decaying condensate population
of its chemical potential, and the velocity of the output atoms analytically. [S0031-9007(97)04914-4]
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The experimental breakthrough to Bose-Einstein co
densation with small numbers of atoms in magnetic tra
[1] has raised much interest in the properties of mesosco
quantum gases. Bose-Einstein condensates with atoms
single magnetic sublevel have been studied experimenta
and theoretically. Recently, interference between two i
dependent Bose-Einstein condensates convincingly prov
their macroscopic coherence [2,3]. Moreover, the lase
like coherence of the atoms is preserved in the presence
a matter-wave splitter based on rf transitions pumping t
atoms into untrapped magnetic sublevels [4]. These sta
are either strong-field seeking or have no magnetic m
ment at all, and leave the trap. Alternatively, optical Ra
man transitions can be used for the transfer [5]. A schem
consisting of a coherent source of atoms and a controlla
output coupler is suitably named “atom laser” [6–8] in a
obvious analogy.

Continuing this analogy, one can distinguish between
cw laser, based on continuous refilling of the condensa
and a pulsed atom laser, where the condensate is perio
cally refilled and slowly released, similar to [4]. Whereas
continuous wave atom laser has been studied only theor
cally [6–8], current Bose-Einstein condensation expe
ments are limited to the pulsed mode of operation. Th
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closest approximation of a cw atom laser by a pulsed o
can be reached in the limit of a weak coupling rf field. In
this case we are able to describe the decay of the trapp
condensate and its energy width analytically. Previous ca
culations addressed the opposite limit of strong couplin
by numerical calculations [9] or neglected the crucial in
fluence of atom-atom interactions [10].

The output coupler consists of a monochromatic res
nant rf field of frequencyvrf transferring23Na atoms into
the F  1 hyperfine state from the trappedm  21 into
the untrappedm  0 and the repelledm  1 magnetic
sublevels. For simplicity an isotropic harmonic trap po
tential V21srd  Voff 1 Mv

2
Tr2y2, V11srd  2V21srd

and V0srd ; 0 are assumed while effects of gravity are
neglected.

The three coupled coherent matter waves are describ
by a three-component Gross-Pitaevskii equation (GP
with resonant excitation in rotating wave approximatio
first studied for a generic two-level system in Ref. [9].

In the following we adopt the point of view ofsponta-
neouslybroken gauge symmetry for a Bose gas initially a
zero temperature. The system of equations for the mac
scopic wave functioñcmstd  e2imvrftkĉmstdl in rotating
wave approximation form, m0 [ h21, 0, 11j now reads
ih̄
≠

≠t
c̃msr, td 

µ
2

h̄2=2

2M
1 Vmsrd 1 h̄mvrf 1 Ukc̃sr, tdk2

∂
c̃msr, td 1 h̄V

X
m0

sdm,m011 1 dm,m021dc̃m0sr, td . (1)
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Here, we have replaced the atomic density by the modu
of the wave function

kn̂sr, tdl  kc̃sr, tdk2 
X
m

jc̃msr, tdj2. (2)

At zero magnetic field the symmetrizeds-wave scat-
tering matrix elementsUmm0  4p h̄2amm0yM for an
elastic collision of a pair of atoms in the sublevel
m, m0 [ h21, 0, 11j are all nearly equal toa  53a0

(a0 is the Bohr radius) according to preliminary calcu
lations of Tiesinga and Julienne [11]. Since the stea
state operation depends mainly on the initial conde
sate mean field, we assume in the following a diagon
scattering matrixamm0  dmm0a for simplicity. Conse-
quently, the Hartree mean-field potential for each sp
component is equal to the total atom densitykn̂sr, tdl
multiplied by U  4p h̄2ayM. The coupling constant
"V  gmBohr jBjy

p
2 denotes the Rabi frequency due t

the rf fieldB for a Landé factorgF .
The initial condition is chosen as the solution of th

stationary GPE for the trappedsm  21d condensate in
the absence of the rf field, i.e.,V  0 in Eq. (1). In the
Thomas-Fermi approximation it reads

jc̃21sr, 0dj2  max

∑
m0 1 Voff 2 V21srd

U
, 0

∏
. (3)

Here, the initial chemical potentialm0 follows from the
normalization condition [see Eq. (8)]. For a small cou
pling strengthsV ø vTd the process of atoms leaking
out of the resonance points is faster than the Rabi os
lations. Therefore the coupling into statem  11 can be
neglected, since its population grows proportional toV4.
In the following only the statesm  21 and m  0 are
considered. After switching on the coupling due to the
field, initial oscillations die out quickly, because the un
trapped atoms leak out of the trap within less than o
Rabi cycle. Other condensate atoms move into the re
nance area replacing the leaving ones. Eventually a q
sistationary state is reached, i.e., them  21 condensate
wave function decays slowly without oscillations while th
atoms coupled out of the condensate are expelled due
the mean-field potential and form a steady current [12
A numerical solution of the two-component GPE show
the uniform decay of the trapped condensate. In Fig
the sum of external and mean-field potentialsVeffsr, td 
V21srd 2 Voff 1 Ujc̃21sr, tdj2 is plotted. As this sum
is nearly spatially independent inside the condensate
description in terms of the Thomas-Fermi approximatio
with the time-dependent chemical potentialmstd appears
to be adequate. In the following we present an analy
cal calculation of the time-dependent output intensity
this quasistationary regime, assuming a three dimensio
isotropic harmonic trap.

We first calculate the rateG of transitions from the
condensate into the output. In the spirit of the Thoma
Fermi approximation we neglect the kinetic energy in
2
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FIG. 1. The effective potentialV21srd 2 Voff 1 Ujc̃21sr, tdj2
stays spatially independent and equal tomstd inside the
condensate for timest  0 ms (upper line) andt  670 ms
(lower line); the parabola describes the external potentia
V21srd 2 Voff. This shows the validity of the Thomas-Fermi
approximation [Eq. (3)] also for later times with small coupling
strengthV. The numerical simulation was carried out forV 
12 s21, N0  5 3 106, Ds0d  3100 s21, vx  2p 3 19 Hz,
andvy,z  2p 3 250 Hz in a quasi-one-dimensional setup.

two-component GPE corresponding to Eq. (1) and solv
for the output density distribution

jc̃0sr , tdj2 
4V2 sin2f 1

2

p
D2srd 1 4V2 tg

D2srd 1 4V2
jc̃21sr , 0dj2,

(4)

where h̄Dsrd  h̄vrf 2 V21srd. The maximum ampli-
tude of the Rabi oscillations is located atrres, determined
by the resonance condition

h̄Dsrresd  0 . (5)

Thus, the main contribution to the output coupling stem
from a small shell around that resonance radiusrres q

2"Ds0dysmv
2
T d.

The time derivative of the density gives the density
transition rate. The total transition rate is obtained by
integrating the position-dependent rate over the conde
sate volume. The transition rate is negligible outside
minute resonance shell and strongly peaked within tha
shell. Expanding the position-dependent detuningDsrd
to first order, one obtains the time-dependent transitio
probability

Gstd ;
1

jc̃21srres, 0dj2
Z `

0
4pr2 ≠

≠t
jc̃0sr , tdj2 dr

ø 4pr2
res

Z `

2`
2V2 sinfs

p
D0srresd2r2 1 4V2 tdgp

D0srresd2r2 1 4V2
dr

 8p2r2
res

V2

D0srresd
J0s2Vtd . (6)

The calculation of the above rateGstd does not account
for the losses due to the leaving atoms. However, a ra
equation allowing for these losses can be derived in th
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limit of weak coupling by using the perturbational rat
st ø pyVd

G  8p2h̄V2

p
2h̄Ds0d

sMv
2
Td3y2

, (7)

with D0srresd  2Ds0dyrres.
Because of the spatial localization of the output co

pling, the decay of the condensate population,

Nstd ;
Z

d3rjc̃21sr , tdj2, Ns0d  N0 , (8)

depends solely on the density of the atoms around
resonance shell with radiusrres

dNstd
dt

 2Gjc̃21srres, tdj2. (9)

In the quasistationary regime we assume the shape
the condensate density being equal to the Thomas-Fe
e

u-

the

of
rmi

solution of the stationary GPE (cf. Fig. 1) with a slowly
varying atom numberNstd,

Nstd 
4p

15U
f2mstdg5y2ysMv2

Td3y2. (10)

The condensate density at the resonance points is th
given by

jc̃21srres, tdj2  fmstd 2 h̄Ds0dgyU . (11)

Inserting this into the decay law (9) we obtain a non
linear differential equation for the decay of the chemica
potential,

d
dt

m 1 a
m 2 h̄Ds0d

m3y2  0 , (12)

wherea  3GsMv
2
Td3y2227y2p21. Integration yields
∑
2h̄Ds0dm1y2 1

2
3

m3y2 2 2fh̄Ds0dg3y2 arcoth
q

myh̄Ds0d
∏ms0d

mstd
 at . (13)
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With Eq. (10) this yields additionally the time evolution
for the number of trapped atomsNstd as well as the flux
and the velocity of the untrapped atoms.

During the depopulation of the condensate the chem
cal potential and the spatial extension of the condens
decrease until the resonance points lie on the surface
the shrinked condensate. At this point the flux out of th
condensate vanishes, becausejc̃21srres, tdj2  0, and the
chemical potential and the number of atoms remaining
the trap become constant in time,

ms`d  h̄Ds0d . (14)

As an example, we chose a small value ofDs0d and a trap
frequencyvT  2p 3 106 Hz, the geometric mean of the
values given in Ref. [4]. The resulting time evolution o
the system variables according to the nonlinear different
equation is shown in Figs. 2(a) and 2(b). The chemic
potentialmstd and the number of trapped atoms reach the
steady state after roughly 25 sec. Correspondingly the fl
and the velocity of the untrapped atoms decrease to z
[cf. Figs. 2(c) and 2(d)]. The corresponding calculation
were also carried out in one dimension in order to compa
the analytical expressions with numerical simulations
the full coupled GPE’s. The results showed excelle
agreement (less than 5% deviation).

The finite duration of the atom pulse ejected from th
trap leads to a finite energy width of both the condensa
and the output beam that is called here thenatural energy
i-
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width dE of a pulsed atom laser, in analogy to the natura
linewidth of spontaneously emitted photons. It can b
calculated approximately by describing the initial stage o
the output coupling process by an exponential decay of t
condensate population,

dN
dt

std  2GpopfNstd 2 Ns`dg . (15)

The rateGpop results in an energy uncertainty,

dE  h̄Gpop ø
15
2

p h̄5y2 V2
p

Ds0d
ms0d3y2 . (16)

Whereas the transition rateG does not depend onm and
N0, the population decay rateGpop does so due to its
dependence oñc21sr , 0d. We thus find a dependence of
the energy width on the condensate number,

dE ~
V2

p
Ds0d

N
3y5
0

. (17)

The natural energy width becomes narrower for weak
coupling strengthV, i.e., a slower output coupling process
The same effect can be achieved by choosing a sma
detuningDs0d which causes the sphere of the resonan
points to shrink towards the center of the condensate. T
energy width can be further reduced by starting out from
condensate with a large populationN0.
3
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FIG. 2. Time evolution in the Thomas-Fermi approximation
(a) chemical potential, (b) number of particles in the trappe
m  21 state, (c) particle flux in the untrappedm  0
state, and (d) velocity of atoms leaving the condensa
The parameters areN0  5 3 106, Ds0d  3500 s21, and
V  20 s21.

The energy widthdE can also be understood as a veloc
ity width dy  dEyMy of the untrapped atoms leaving
the condensate. The parameters given in Fig. 2 resul
kyl  1.31 cmys for the velocity outside the condensat
anddyykyl ø 1026 for the relative velocity width.

An additional energy width is imposed by the tempor
decay of the chemical potentialmstd. It leads to a decrease
of the output velocity according toMystd2y2  mstd 2

h̄Ds0d thereby implying a frequency chirp of the outpu
beam. This frequency chirp can be compensated, howe
by imposing a chirp on the frequencyvrf of the rf field
such that the output velocity rather than the detuningDs0d
becomes constant.
4
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The output pulse can last for up to the order of 100 se
such that the causes of phase fluctuation which would al
influence a cw-atom laser have to be considered as we
Additional broadening of the energy width of the outpu
beam is caused by thermal excitations of the condensa
wave function and technical noise of the output couplin
mechanism such as fluctuations of the confining magnet
field. Thus, thenatural energy widthcalculated above
has to be understood as a lower limit. A comprehensiv
theoretical description of the fluctuations of the condensa
wave function, particularly of its phase, is beyond the
scope of this Letter.

It has been shown in [8] that the temporal decay of phas
correlations transforms into a decay of the spatial cohe
ence of the output beam along the mean classical trajecto
that is being passed during the according correlation tim
of the condensate phase.

At present, random variations of the bias magnetic fiel
at the mGauss level are among the most important expe
mental limitations to the coherence properties of the ou
put, prior to fluctuations of the condensate wave function
They might contribute to a phase diffusion of the outpu
beam in the 100 Hz range.

Pulsed atom lasers will play an important role in creatin
coherent matter waves as the size of the condensate m
be largely increased in future experiments. The resul
of this Letter are based on the solutions of the couple
Gross-Pitaevskii equations and allow us to extract th
relevant properties of the output analytically. The velocity
of the untrapped atoms depends on the slowly decayin
population of the trapped condensate fraction, leading to
slow chirp of the output frequency. While this frequency
chirp might be compensated by a variation of the rf
field frequency, other sources of spectral width, such a
fluctuations of the confining magnetic field, are surely
more difficult to overcome.
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