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ward the bisectrix from the binary axis, respec-
tively. If we take into account that our experi-
mental values may always correspond to the low-
er one of two shear modes indicated with a solid
curve in the figure, the absolute values of the
velocity and the general shape of both curves are
in fairly good agreement. Some discrepancies
might come from the misorientation of crystal
axes, misalignment of crystal mounting in the
magnetic field, and the complex many-ellipsoidal
energy structure of bismuth. On the other hand,
this anisotropic band structure may allow the
strong coupling of the electrons with the shear
mode. The experimental fact that the sharpness
of the kink and the differential resistance beyond
the kink field vary with the crystal orientation
may indicate the directional dependency of the
strength of the coupling between the electrons
and the phonons. It is also conceivable that our
new method may give a slightly higher value than
the actual sound velocity.

In some crystal direction, for instance, around
100 degrees in Fig. 4, we can see the occurrence
of a sinusoidal electrical oscillation of frequency
-10' cycles/sec when the applied field exceeds
the kink field, whose frequency f does not depend
on the external circuit but is determined by means
of the simple formula, f= s/d, where d and s are
the width of the bismuth specimen and the sound

velocity in the direction perpendicular to the
crossed electric and magnetic fields. This os-
cillation phenomenon may indicate an acoustic
standing wave built up of frequencies that resonate
corresponding to the size of the specimen; in
other words, the generation of coherent phonons.

Moreover, we may have to think about the elec-
tron-hole recombination and generation velocities,
v~ and v& on the bismuth surface, if these are not
much larger than the velocity vx-10' cm/sec,
which may give an accumulation of electrons and
holes on the surface, because the recombination
and generation processes in bulk may be fairly
slow at low temperature. No positive evidence
has been observed so far on this surface accumu-
lation.

The author wishes to thank P. J. Price, R. R.
Haering, R. C. Casella, and other colleagues in
this laboratory for stimulating discussions and
valuable suggestions and L. F. Alexander for help
in taking a large part of the data.
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Because of the Coulomb force between charges,
electrons in metals can participate in oscillatic. ..s
of a collective type, the so-called plasma oscilla-
tions. Both theory and experiment have shown
that these plasma oscillations can be excited by
high-energy charged particles passing through
the metal. More recently it has been shown ex-
perimentally' that in thin metal films electrons
can excite plasma oscillations which in turn emit
a peak of electromagnetic radiation around the
plasma frequency. This radiation from thin foils
had first been predicted theoretically by Ferrell. '
Subsequently an alternative theoretical treatment
of this radiation was presented3 which connected
it with Russian work on transition radiation &' and
was more exact than the original theory of Fer-
rell. In view of the appearance of a recent paper'

and the possibility that it may give the impression
that Ferrell's mechanism for the peak in radiation
differs from the interpretation of transition radia-
tion, it was felt desirable to publish more details
of the previous work' which emphasized that Fer-
rell's calculation and that of transition radiation
give equivalent results for the peak in radiation.
This is discussed further near the end of this pa-
per.

It was first pointed out by Frank and Ginsburg'
that a charged particle will emit electromagnetic
radiation when passing through a boundary sepa-
rating two different media even though the parti-
cle is moving at a constant velocity. The change
in the electromagnetic fields surrounding the
charged particle as it makes the transition from
one medium to another with a different dielectric
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Equation (2) can be satisfied if W~ satisfies

v'W +eh 'W =-(4z/c)j .
0 (d co

(4)

We can determine E~ from Maxwell's equations,
glvlng

E =ih [kW +(eh ') '(V k)VW ]. (5)

Thus a knowledge of W& from Eq. (4) permits a
calculation of all of the electromagnetic fields.

constant is the cause of the radiation, hence the
name transition radiation.

In the more general case of two or more plane
parallel boundaries separating two or more dif-
ferent media, several alternative methods have
been presented for calculating the transition ra-
diation. '~'~8

Although an expression for transition radiation
from a slab has already been published, ' there is
apparently a typographical error in this result,
and it appears worthwhile to outline the method
used here' and restate the result.

The problem to be solved is the radiation from
a particle of charge e and constant velocity v pass-
ing normally through one or more plane bounda-
ries separating two or more different media. It
will be assumed that the media in their interac-
tion with electromagnetic fields can be represent-
ed by a frequency-dependent dielectric constant e.
This should be a satisfactory approximation for
photons of energy less than 100 ev. Choosing the
z direction along the particle path, the current
produced by the particle is

j(x,y, z, t) =kev6(z)5(y)5(z -Ut), (1)

where k is a unit vector in the positive z direc-
tion. All quantities (field strengths, currents,
etc.) are time Fourier-analyzed. The wave equa-
tion for the magnetic field is given by

V'H +eh 2H =-(4v/c)Vxj, (2)
(d 0 (d (d

where h, ' = (~/c)', and the subscript &u denotes
the time Fourier component which varies as e ~~.
Our problem is reduced to a scalar one by intro-
ducing a scalar function 8'~ as follows:

H = Vxk%' (2)

In particular, the total energy radiated from
the particle can be calculated by integrating
Poynting's vector over the two planes Q ~0,
where x, is a constant. In terms of 5', the total
radiated energy U becomes

U=2Im c' ceo 8' ez +ek 8' 88' Bx dzdydm,0

where Im means imaginary part, W~ is the com-
plex conjugate of 8'~, and the integration with re-
spect to z andy is over the x =+@,plane. By sym-
metry the integration over the x = -xo plane is the
same as over the x =x, plane, giving a factor of 2
in Eq. (6). To facilitate the solution for W~, we
use a method similar to the Weizsicker-Williams
treatment of scattering and Fourier analyze
W~(z, y, z) with respect to x andy, obtaining in
Eq. (4) for the Fourier component WK(z) an ordi
nary differential equation in z which can be solved
by standard techniques.

It is found that the solutions for WK(z) can be
divided into two parts, one part which varies as
exp[i(&u/v)z] and represents fields that move
along in phase with the particle, and another
part which varies as exp(-Kz) for z & 0 and rep-
resents fields which radiate from the boundaries.
Denoting the coefficients of these two exponential
terms by f(K) and q(K), respectively, it can be
shown~ that the expression for the transition ra-
diation at frequency ~ per unit frequency interval
becomes

T =4&'ur'c 'e ~ sin'8cos'8iq(K) ['dQ. (7)

It is assumed that the dielectric constant in the
region of observation e, is real and positive so
that the radiation can be transmitted to the point
of observation. The angle 8 is measured from
the z axis and dQ =sin8d8dg, Q being the angle
measured in the x, y plane from the x direction.
It is seen from (7) that the transition radiation
per unit solid angle is

dT /dent, =4w'e'c 'e ~ sin'8 cos'81@(K)I'. (8)

For the case of interest, a slab of thickness T
and dielectric constant e oriented perpendicular
to the charged particle's path and surrounded on
both sides by vacuum, q(K) has the form

4zc h 1 Be (1-f)
e K(K - in) K(K+ in) K(K+ in) K'(1+ h'f)

-(K'+in)T, (K' - in)T

K'+in K'-in
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where

Q = CO/V,

h=(/ -1)(1-e )[(/-1) e -(/+1) j

/= K'/Ke,

K'=k, (sin'8 -e)v'; ReK'& 0; ImK'& 0,

ko= &u/c,

K = -ik, cos8,

f= (1 - /) (1 + l) ',

-2K IT

B =2e l(1+h)(l+1) (1. +h')

The expression for the transition radiation is
given in Eq. (8), where 1/(K) is given in Eq. (9).
The resulting expression is very cumbersome
and not very illuminating. In order to make the
result more tractable, the nonrelativistic limit
is taken and )e a is assumed not very large. In
this limit IK'I and IKI «n. Equation (9) be-
comes

2 -K'T K'T -i@7
4wc r/(K) 2(l -e)[(1-/)e -(1+l)e +2/e ]

2 -K'T 2 K'T
e k, cos8 eo. [(/-I) e -(/+1) e ]

(9 i)

If in addition it is assumed that I z ) «1 and sin'8 &+ ) e ), the expression for the transition radiation

becomes

22 . 2 x. x 2 2x. 2
dT e v sin 8 (e sinhx-8 cosn7+1) +e sin n1

(10)
x 2 2

(2e ~ + 8 Sillhx tan8) + 4f1

where x =koT sin8, and Ey and 6, are the real and
imaginary parts of e. The expression in Eq. (10)

has a sharp maximum at e, = 0 if (2e2+ e Psinhxp
xtan8) «1, with a half-width of

b.&u=(e sinhx tan8+2e )[(de /d~) j, (11)
-1

p 2 1 p

where all quantities are evaluated at the plasma
frequency &up where e, = 0 and xp = (cps/c) sin8.
This frequency is just the bulk plasma frequency

of the metal. Thus we expect to find a peak in the
transition radiation at the plasma frequency for
metal slabs satisfying the condition that (2e2
+e psinhxptan8) «1. Except for the situation

X* 2

where tan8 = 0, this will only occur when xp and
&, are much less than one or for thin, nonabsorb-
ing films.

The total intensity in the peak per unit solid an-
gle can be obtained by integrating (10) over fre-
quency and obtaining

3
dQ 2wc (dE/d4&)'

p

2 2 x x 2 2' . 2
e v cos8sin8 (e sinhx -e cosn7+I) +&

p

sinhx + 2e /tan8
p 2

(12)

where again all quantities are evaluated at the
plasma frequency.

An interesting special case is that of a thin
(xp«1) ideal metal slab of free electrons whose
dielectric constant el = 1 - (&up/~)' and e, = 0. In
that case the half-width becomes, from (11),

(a(o/(u ) =(&u 7'/2c) sin8tan8,
p p

and the total intensity in the peak per unit solid
angle becomes, from (12),

dT e'vcu cos8 sin'(&u r/2v)
p

dQ 2wc2 ((u v/2v)
p

The results in (11') and (12') agree with those of
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Ferrell.
In conclusion, it has been shown that Ferrell's2

calculation of a peak of radiation at the plasma
frequency from thin films can also be obtained
from a calculation of transition radiation, and
in fact they are two different ways to consider
the same phenomenon. Since the transition radia-
tion calculation includes all radiation from the
film, it is more general. Ferrell's method only
calculates the peak though it does so correctly
and shows the physical mechanism causing the
peak. Reference 6 also points out that the peak
is predicted by transition radiation but then im-
plies that Ferrell's mechanism is the wrong in-
terpretation and plasma effects do not cause the
peak in radiation. This apparently occurs because
of a misinterpretation of Ferrell's result. The
plasmon referred to by Ferrell is not the same
as that referred to by reference 6. Ferrell's
plasmon is not a bulk one with a charge distribu-
tion in the interior, as reference 6 seems to as-

sume, but is solely a surface effect, the charges
existing only on the surface.
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Because of the strong absorption of the g band
in alkali halide crystals, it has generally been
assumed that the radiative lifetime of the excited
state would be of the order of that for an allowed
atomic transition, i.e. , about 10~ sec.' It is the
purpose of this Letter to report direct measure-
ments of this lifetime, showing that it is of the
order of 10 ' sec. In addition, it will be shown
how measurements of photoconductivity, lumines-
cence, and lifetime may be used to obtain interest-
ing information about the excited states of the P
center.

The I' band in a crystal such as KC1 has been
interpreted as a transition which carries the elec-
tron (occupying a negative-ion vacancy) from the
ground state to a bound excited state lying about
0.2 ev below the bottom of the conduction band.
At temperatures above about 125'K in the case
of KCl most electrons so excited will be thermally
ejected into the conduction band before they can
return to the ground state by radiation. Assuming
that the probabil, ity per second of thermal ioniza-
tion may be expressed by the relation 1/r; = (1/Tp)
xexp(-dE/AT), while the probability of radiative

return to the ground state, 1/TE, is temperature
independent, one has for the total probability 1/T
=1/TE+(1/Tp) exp(-LE jkZ'), so the expression for
the mean lifetime of the state as a function of tem-
perature is given by

/[1+(7 /r )e ].
~E'/kT

In this equation, TR is the radiative lifetime, AF-

the activation energy for ionization, and 1/To the
escape frequency.

Using the above relationships, one can write ex-
pressions for the fraction of excited E centers
which decay by luminescence':

=1/[1+(~ /T )e ],
-n,E/kT

or by thermal ionization:

In this simple model qL +g& =1. Only one excited
state is considered, and other processes, such as
nonradiative recombination with the ground state,

10


