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Numerical experiments on the thermodynamic
parameters and pair distribution function of a
classical fluid in thermal equilibrium, as well
as x-ray diffraction analysis, have produced
rather reliable information' with which a number
of theoretical approximations may be compared.
Such comparisons have recently been carried out'
with the aid of large computing mach nes, and
the results over a considerable range of intensive
variables have strongly favored the Percus and
Yevick (P.Y.) equation for the pair distribution
function as opposed to the Bogoliubov, Born,
Green, Kirkwood, and Yvon' (B.B.G.K.Y.) and
hypernetted chain' equations. This has occa-
sioned some surprise, since the former appears
to require a sequence of linked but ill-defined
approximations, while the latter involve single
mell-defined mathematical truncations. It is the
object of this Letter to validate on firm physical
grounds the numerical results obtained and to
point out directions in which further progress
may confidently be expected.

The qualitative basis of our argument is not
novel. It resides in the representation of multi-
particle coordinate distribution functions ns as
ordinary (one-) particle densities n(y) under the
imposition of suitable external potentials. Spe-
cifically, it is readily shown that in a grand ca-
nonical ensemble,

n (y, x ~ ~ x )/n (x ~ ~ x )=n(y IU), (1)

where

U(x) = V(x, x, )+ ~ ~ ~ + V(x,x,);

here V(x, y) is the interparticle potential and the
additional external potential U has been set off
by a vertical bar. One must now carry out the
process of "turning on" the external potential,
and we will accomplish this by a functional Tay-
lor series expansion about the value U(x)=0. The
burden of the physics is to choose the dependent
variable or function to be observed [it need not
be n(y)] and the independent variable or function
to be varied [it need not be U(x)] such that the
expansion converges very rapidly. An optimal
choice depends both upon the system being con-
sidered and upon the parameter range of interest.

Changing the external potential has an effect

upon the distributions which is easily deduced by
comparing the iterative definition of the Ursell
distribution functions (P = 1/k T):

PU-(x, ) PU(-x )
s+1 ' 1 s

s
( )/

-PU(x, ) -PU(xs)
(2)

-5PU(y)/5n(x) = 5(x -y)/n(x) -c (x,y), (3b)

where c(x,y), the direct correlation function,
may be regarded as defined by the pair (3).

Now consider n(y ~U)eP (y) as a functional of
n(y ~ U), as U is changed from 0 to its final value.
The relation is strictly linear outside the range
of the potential U, and in addition, nePU con-
tinues its boundary value and slope (i.e. , that
of n itself) for some distance inside the range.
Hence a Taylor series expansion,

n(y IU)e
PU y

=n(y)+f[n(z ( U)-n(z)]5n(y I U)e /5n(z) U) [

PU(y)
U

de+ ~ ~ ~,

truncated at first order as indicated, is particu-
larly appropriate for a hard core at moderate
pressure, where neP proceeds approximately
linearly to the origin. Taking U(y) = V(y, x) as
in (1), Eq. (4) works out to

n, (x,y)[e ' -1]=-n(x)n(y)c(x, y),
pV(x, y)

precisely the P.Y. equation. ' Selecting, U as an
s-point potential with s &1 recovers the "super-
position" hypothesis consistent with (5). Further
terms in the Taylor series are very easily ac-
commodated.

Expansions similar to (4) may be written down
and similarly truncated at first order. Unless
chosen with care, however, the dependent and
independent functions will not bear a fixed linear

with the explicit sz(x„x,) = n, (x„x,)-n(x, )n(x, ),
etc. Equally important is the effect of varying
the one-body density. On the basis of (2), it suf-
fices to compute 5U(y)/5n(x). One finds

-5n(x)/5PU(y) =n, (x,y)-n(x)n(y)+n(x)5(x-y), (3a)
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relation over a substantially complete region of
space as the external potential is turned on. For
exa.mple, if one expands ln[neP ] in terms of n,
large density fluctuations outside the range of U

will not be well represented. Indeed, this par-
ticular choice gives rise to

PV(x, y)+ ln[n, (x, y)/n(x)n(y)]+1-n2(x, y)/n(x)n(y)

= -c(x,y), (6)

which is the hypernetted chain approximation. ~

On the other hand, the same development ap-
plied to the relation between nVPU and ln[neP ]
yields the B.B.G.K.Y. equation4 in the form

V ln[n (x,y)e ' /n(x)]
PV x, y

+ [V inn(y)] ln[n (x,y)e ' /n(x)]
PV(x, y)

+f[n (x, z)/n(x)]v pV(x, z)[n2(y, z)/n(y)n(z)-1]dz = 0.

While nvpU does vanish outside the range of force,
the required linear relation within simply does
not obtain; the precise effect is not easy to assess.

The superiority of the P.Y. equation for short-
range forces and moderate densities is no longer
obvious in other domains, with characterizations
as diverse as: long-range forces, phase transi-
tions, quantum fluids, etc. A detailed elabora-
tion of the present viewpoint for the more general
situation is now being prepared for publication.
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The idea that all strongly interacting particles
are nonelementary in the technical sense of not
being associated with quantized wave fields is a
very attractive one. The possibility of associat-
ing such particles with trajectories of so-called
Regge poles of the S matrix regarded as an analy-
tic function of a complex angular momentum has
been widely discussed. ' Unfortunately, it has
not yet been possible to establish theoretically
any of the "desired" properties of Regge trajec-
tories in a relativistic theory.

It has been conjectured by Chew and Frautschi'
that all of strong interaction physics (including
predictions of particle masses, baryon conserva-
tion, strangeness, isotopic spin, etc. ) will "flow"
from the principles of maximal analyticity of the
S matrix, unitarity, and the concept of maximum
strength of interactions compatible with unitarity.

An attempt to axiomatize an S-matrix theory which
makes no reference to fields has been made by
Stapp. ' From the standpoint of theoretical phys-
ics, the flow has thus far been more of a trickle
than a deluge. Whether or not we know, yet, the
proper basis for the Regge pole hypothesis, the
concept seems to be a very useful one for high-
energy physics phenomenology' and the question
of "elementarity" can be tested experimentally. 4

It is somewhat disturbing that any theory founded
on such general principles as unitarity and ana-
lyticity should single out only strong interactions.
The outstanding omission from the scene is the
photon. Interestingly enough, this is the only ob-
ject for which the field concept seems to have a
very firm foundation in the theory of measure-
ment. We mould like to argue that since photons
interact with all charged particles (including the
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