line from the remaining spectrum. The relative width of the line at half intensity is $\Delta k/k \simeq 0.3$.

This fact is very important in single-pion photoproduction measurements, because the line falls in the neighborhood of the first resonance.

We also performed measurements with a collimator acceptance of 0.8 mrad; the line height is decreased by a small amount, but the beam intensity is increased to $\sim 7 \times 10^9$ equivalent quanta/ minute. As far as the intensity of the beam is concerned, it should be kept in mind that a peaked spectrum is equivalent to a normal bremsstrahlung spectrum which has the same magnitude as the peak at the energy of the peak.

Simultaneously with this work we have calculated the polarization of the photon lines.¹⁰ By making use of the lattice of Fig. 1(a) we find for the line at $x = x_1$ in Fig. 1(b) a polarization $P = (I_{\perp} - I_{\parallel})/((I_{\perp} + I_{\parallel}) = 33\%$, where I_{\perp} and I_{\parallel} are the bremsstrahlung intensity for photons polarized perpendicular and parallel to the plane $(\tilde{p}_1, \tilde{b}_1)$, respectively.

In the previous Letter¹ we gave results concerning first approximation calculations for a spectrum with $E_1 = 6$ GeV and a line at k = 1 GeV; the sum appearing in (4) was extended over the points of Fig. 1(a) enclosed in the circles only. If the sum is extended over all the points, a line at k=1 GeV, having a peak value equal to the preceding one, is obtained for $\theta = 0.88$ mrad and \vec{p}_1 in the plane of the axes (110), (110).

The corresponding calculated value of the polarization is 34%.

¹G. Barbiellini, G. Bologna, G. Diambrini, and G. P. Murtas, Phys. Rev. Letters <u>8</u>, 112 (1962).

 2 G. Bologna, G. Diambrini, and G. P. Murtas, Phys. Rev. Letters <u>4</u>, 134 (1960).

 3 G. Bologna, G. Diambrini, and G. P. Murtas, Phys. Rev. Letters <u>4</u>, 572 (1960).

⁴R. Wilson, Nuclear Instr. <u>1</u>, 101 (1957).

⁵G. Bologna, G. Diambrini, R. Toschi, A. S. Figuera, U. Pellegrini, B. Rispoli, and A. Serra, Nuclear Instr. <u>12</u>, 263 (1961).

⁶H. Bethe and W. Heitler, Proc. Roy. Soc. (London) <u>A146</u>, 83 (1934).

⁷J. A. Wheeler and W. E. Lamb, Phys. Rev. <u>55</u>, 858 (1939).

⁸H. Überall, Phys. Rev. <u>103</u>, 1055 (1956).

⁹J. M. Bijvoet, N. H. Kolkmeyer, and C. H. Mac-Gillavry, <u>X-Ray Analysis of Crystals</u> (Butterworths Scientific Publications, Ltd., London, 1951), pp. 64 and 239.

¹⁰After the publication of our previous Letter (reference 1), the calculation of the bremsstrahlung intensity and of the polarization was performed independently also by Überall [H. Überall (private communication)].

S-WAVE \overline{K} -N SCATTERING AMPLITUDES

T. Akiba^{*†} and R. H. Capps

Northwestern University, Evanston, Illinois (Received April 23, 1962)

The recent measurements of Tripp, Watson, and Ferro-Luzzi have provided a great deal of information concerning the S-wave \overline{K} -N scattering and absorption interactions in the range of lab-system K-momentum 300-500 MeV/ $c.^1$ These authors state that the data are consistent with a smooth extrapolation of the first set of \overline{K} -N scattering amplitudes proposed recently by Humphrey and Ross² (we denote this set by HR-I). The purpose of this note is to point out that the data of Tripp, Watson, and Ferro-Luzzi are not consistent with the HR-I amplitudes, but rather suggest that the real part of the isotopic spin 0 scattering amplitude is appreciably negative at the K-Nthreshold. Such a large negative ReA_0 is consistent with the predictions of Schult and Capps^{3,4} and with the assumption that the 1405-MeV Y_0^* is an

S-wave resonance of the Dalitz-Tuan type.⁵

We denote the relative phase of the S-wave isotopic spin 0 and $1 \overline{K} + N \rightarrow \pi + \Sigma$ amplitudes by ϕ_{γ} $= \phi_0 - \phi_1$. The experimental data on the ratios of $\Sigma^+ + \pi^-$, $\Sigma^- + \pi^+$, and $\Sigma^0 + \pi^0$ states produced in K^{--} p collisions indicate that ϕ_{γ} is approximately equal to $\pm 60^\circ$, $\pm 90^\circ$, and $\pm 110^\circ$ at \overline{K} -p threshold, 175 MeV/c, and 400 MeV/c, respectively.^{6,1} In order to explain the interference of the S-wave amplitudes with the 395-MeV/ $c D_{3/2}$ resonance, Tripp, Watson, and Ferro-Luzzi are forced to assume that ϕ_{γ} is negative at this energy. Since no violent fluctuations in the Σ^-/Σ^+ ratio are observed between 175 MeV/cand 400 MeV/c, ϕ_{γ} must be negative below 175 MeV/c as well. However, the HR-I set is characterized by a positive value of this phase difference.²

We use the indices t and t' to refer to the $K^- + p$

and $\overline{K}^0 + n$ threshold energies, respectively. Similarly, $\hbar k$ and $\hbar k'$ denote the magnitudes of the particle momenta in the center-of-mass system in the $K^- + p$ and $\overline{K}^0 + n$ states, respectively. In the zerorange model, the relative phase is given by

$$\phi_{\gamma} = \arg\left(\frac{1}{A_0^{-1} - ik'}\right) - \arg\left(\frac{1}{A_1^{-1} - ik'}\right) + \phi_c,$$
 (1)

where ϕ_c is an energy-independent constant, and the A_j denote the complex scattering lengths, i.e., $A_j = a_j + ib_j$.⁷ At the energy of the $K^- - p$ threshold, k' is imaginary and is given approximately by $i0.3 \ \mathrm{F}^{-1}$. The experimental fact that at $K^- - p$ threshold the absorption is predominantly in the I = 0 state leads to the condition, $\phi_{\gamma}(t') - \phi_{\gamma}(t) > 0$. Hence, if ϕ_{γ} is negative, the experimental data imply

$$\phi_r(175 \text{ MeV}/c) - \phi_r(t') \leq -30^\circ.$$
 (2)

It is seen from Eq. (1) that this condition requires either a large positive a_1 , a large negative a_0 , or both.

Schult and Capps predicted the existence of an I=0 resonance below the K^--p threshold from the assumption that the large difference in the $\Sigma^- + \pi^+/\Sigma^+ + \pi^-$ ratio, observed when stopped K^- are absorbed in hydrogen and in deuterium, results from the dependence of the production amplitudes on $\Sigma + \pi$ energy.³ Evidence for such a Y_0^* has been found by Alston <u>et al.</u>,⁸ but this resonance has not been established definitely, and no determination of spin or parity has been made. Recently, Schult and Capps showed that their hypothesis requires that ϕ_{Υ} be negative, and that $a_0 \lesssim -1.3$ F.⁴ Hence,

the new evidence concerning ϕ_{γ} supports this hypothesis.

The second set of amplitudes proposed by Humphrey and Ross² (HR-II) is characterized by a negative ϕ_{τ} and a negative a_0 , i.e.,

$$A_0 \approx -0.6 + i, A_1 \approx 1.2 + 0.6 i, \phi_{\gamma}(t) \approx -62^{\circ}.$$

However, if this set is extrapolated to the momentum range 240-360 MeV/c, it is in contradiction with the $K_2^0 + p$ data.⁹ The inconsistency occurs because of the large positive value of a_1 in HR-II. If a_1 is chosen smaller, however, an even greater negative value of a_0 is required by the condition, Eq. (2).

If one assumes a small positive effective range in the I=0 state, it is possible to construct a set of amplitudes that fits all the data reasonably well. In order to illustrate this, we list below a set of amplitudes chosen somewhat arbitrarily; no systematic attempt has been made to minimize the deviation from experiment or to find all possible solutions. We write

$$A_{j}^{-1} = A_{j}^{-1}(t) + \frac{1}{2}r_{j}k^{2}, \qquad (3)$$

and choose the parameters

$$A_{0}(t) = (-1.3 + 0.9 i) \text{ F}, \quad r_{0} = 0.62 \text{ F},$$
$$A_{1}(t) = (0.4 + 0.6 i) \text{ F}, \quad r_{1} = 0,$$
$$\phi_{n}(t) = -60^{\circ}, \quad \epsilon = 0.5, \quad (4)$$

where ϵ is the ratio of the $\pi + \Lambda$ production cross section to the total I=1, $\pi + Y$ production cross section. In Table I the predictions resulting from these amplitudes are compared with the 0-240

Table I. Cross sections and branching ratios for low-energy $\overline{K} - p$ and $K_2^0 - p$ processes calculated from Eq. (4), compared with the predictions of HR-I and HR-II and with experiment. The (I = 0/I = 1) ratio R is given by $R = 3\Sigma^0/(\Sigma^- + \Sigma^+ + \Lambda - 2\Sigma^0)$. The Σ^-/Σ^+ ratios are obtained by setting $\phi_{\gamma}(t) = \pm 60^\circ$ and $\epsilon = 0.5$. The last column refers to $K_2^0 + p$ reactions; the calculation of this branching ratio involves both $\overline{K} + N$ amplitudes, and is explained by Luers et al.^a The values in parentheses are obtained if the effective range r_0 of Eq. (4) is set equal to zero.

	K-p at rest		$\begin{matrix} K^{-}-p \text{ at } 175 \text{ MeV}/c \\ \sigma_{el} & \sigma(\overline{K}^{0}n) & \sigma(\Sigma^{\mp}\pi^{\pm}) \end{matrix}$			Σ^{-}/Σ^{+}	$K_1^0/(\Lambda + 2\Sigma^0)$
-	R	Σ^{-}/Σ^{+}	(mb)	(mb)	(mb)		at 240 MeV/c
HR-I	4.8	2.1	61	17	44	0.96	0.19
HR-II	4.2	2.1	60	18	41	1.2	1.2
Eq. (4)	4.2	2.1	60 (54)	16 (17)	43 (40)	1.2 (1.4)	0.48
Experiment	$4 \sim 8$	~2.2	$70 \sim 90$	$11{\sim}19$	$33 \sim 49$	$0.7 \sim 2$	$0.4 \sim 0.9$

^aSee reference 9.

MeV/c, $K^- + p$ and $K_2^{0} + p$ data, and with the predictions of the HR amplitudes.⁷ The real part of A_1 has been chosen smaller than that of HR-II in order not to contradict the 240-360 MeV/c $K_2^{0} + p$ data.⁹ The amplitudes of Eq. (4) are also in rough agreement with the 400-MeV/c data of reference 1. (The value of A_0 at 400 MeV/c is very close to that of HR-I.) Of course, there is no reason to believe that the effective range corrections to A_1 and to ϕ_c [see Eq. (1)] are negligible; however, a small effective range correction to A_0 makes an appreciable effect because of the small value of A_0^{-1} .

We emphasize again that the amplitudes of Eq. (4) are quite arbitrary. The essential point of this note is that the requirement that ϕ_{γ} be negative, together with the assumption that the effective ranges are not large compared to 0.5 F, requires an appreciably negative value of $a_0(t)$ in order to fit the low-energy $K^- + p$ data and the $K_2^{0} + p$ data.

Since the key to this argument is the statement that the 400-MeV/c data¹ requires ϕ_{γ} to be \approx -110° rather than $\approx 110^{\circ}$, we shall summarize briefly the features of the data that lead to this conclusion. We define $T(\Sigma^{\mp} + \pi^{\pm}) = \frac{1}{2}(T_0 \pm T_1)$, and $T(\Sigma^0 + \pi^0)$ $=\frac{1}{2}T_0$.¹⁰ A value $\phi_{\gamma} = \pm 110^\circ$, together with the observed $|T_1/T_0|$ ratio, leads to the phase differences between charge states, $\phi(\Sigma^+) - \phi(\Sigma^0) = \phi(\Sigma^0)$ $-\phi(\Sigma^{-}) \approx \pm 60^{\circ}$, where the upper signs are to be taken together. The rapid variations in angular distribution and polarization near 400 MeV/c result from interference of the S-wave amplitudes with a resonating $D_{3/2}$ amplitude in the I=0 state. The angular distribution and polarization data imply that this resonant amplitude is in phase with the S-wave $\Sigma^+ + \pi^-$ amplitude at a momentum of about 400 MeV/c. The assumption $\phi(\Sigma^+) - \phi(\Sigma^0)$ $=\phi(\Sigma^{0})-\phi(\Sigma^{-})\approx-60^{\circ}$ then leads to the conclusions that the polar-equatorial ratio for the $\Sigma^- + \pi^+$ events should be negative somewhat below 400 MeV/c and large and positive above this energy,

and the corresponding ratio for the $\Sigma^0 + \pi^0$ events should reach its maximum somewhat above 400 MeV/c. Both these predictions are in excellent agreement with the data. On the other hand, the assumption $\phi(\Sigma^+) - \phi(\Sigma^0) = \phi(\Sigma^0) - \phi(\Sigma^-) \approx 60^\circ$ leads to predicted polar-equatorial ratios for the $\Sigma^- + \pi^+$ and $\Sigma^0 + \pi^0$ events that are essentially "reflections" through 400 MeV/c of the observed ratios.

*On leave of absence from Tohoku University, Sendai, Japan.

[†]Supported by the National Science Foundation.

¹R. Tripp, M. Watson, and M. Ferro-Luzzi, Phys. Rev. Letters <u>8</u>, 175 (1962); Phys. Rev. Letters <u>8</u>, 28 (1962).

²W. E. Humphrey and R. R. Ross (private communication) and University of California Radiation Laboratory Reports UCRL-9749 and UCRL-9752 (unpublished). The parameters of the Humphrey-Ross amplitudes are given in reference 4.

³R. L. Schult and R. H. Capps, Phys. Rev. <u>122</u>, 1659 (1961).

⁴R. L. Schult and R. H. Capps, Nuovo cimento <u>23</u>, 416 (1962).

⁵R. H. Dalitz and S. F. Tuan, Phys. Rev. Letters $\underline{2}$, 425 (1959).

⁶Luis Alvarez, <u>Proceedings of the Ninth Annual Con-</u> <u>ference on High-Energy Physics at Kiev, 1959</u> (Academy of Science, U.S.S.R., 1960); also University of California Radiation Laboratory Report UCRL-9354 (unpublished).

⁷For lists of references and formulas concerning the zero-range model, see R. H. Dalitz, Revs. Modern Phys. <u>33</u>, 471 (1961) and G. Morpurgo, Ann. Rev. Nuclear Sci. <u>11</u>, 41 (1961), especially Sec. 6.2.

⁸M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters <u>6</u>, 698 (1961).

⁹D. Luers, I. S. Mitra, W. J. Willis, and S. S. Yamamoto, Phys. Rev. Letters 7, 255 (1961).

¹⁰The sign in the definition of $T(\Sigma^0 + \pi^0)$ is arbitrary; for convenience we have taken it opposite to that of reference 1.