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It is well known that the Vlasov equation, i.e.,
the “collisionless” Boltzmann equation with a
self-consistent electric field, predicts a damping
of plasma oscillations! (Landau damping). In
quantum mechanical language, Landau damping
corresponds to plasmon decay into a one-particle
final state. We have calculated the damping rate
to a two-particle final state (collision damping)
and we find that this higher order process is the
main damping mechanism for all but very short
wavelengths.

Two cases are considered in detail: an electron-
ion plasma and an electron gas with a uniform pos-
itive background. We present results for the col-
lision damping rate y .(k) divided by the classical
electron plasma frequency

Qp = (4me?n /m)V?;
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The constants are the Debye wave number 2

= (4me®uB)¥%, B=1/kT, the thermal de Broglie
wave number kg = (m/B#%)"?, the density n, the
electron mass m, and Euler’s constant C =0.56.
These results are to be compared with the Lan-
dau-damping rate which for both systems is [neg-

lecting terms O(m /M) where M is the ion mass]
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where A is of higher order in sz/n. Both Egs.
(1) and (2) give collision damping rates consid-
erably larger than Eq. (3) when k<<kp. It is
clear then that one cannot treat the damping of
plasmons in the self-consistent field approxima-
tion as in the work of Klimontovich and Silin,? or
in the equivalent random phase approximation of
Pines and Schrieffer,® since these approximations
fail to include the collision effects. The damping
term in the kinetic equations for the plasmon dis-
tribution is incorrect in both papers. The elec-
tron-ion plasma provides the most striking exam-
ple: In the limit of infinite wavelength the Landau
damping vanishes exponentially but the collision
damping remains constant. Even for the electron
gas for which the collision damping actually van-
ishes in the long wavelength limit, the ratio y. /vy,
for k=0.1kp is about 10'*, for n=10"" cm™ and T
=10°°K,

The vanishing of the damping in the long-wave-
length limit for the electron gas is related to the
fact that electron-electron scattering does not af-
fect the long-wavelength conductivity since current
and momentum are proportional. A similar calcu-
lation at 7'=0 and high densities (which then must
include exchange effects) has shown that y ./ Qp
is also of order k? for long wavelengths.*

The divergence of the logarithms of Eqgs. (1) and
(2) in the 7 - 0 limit is a familiar effect.5’®* Except
for a factor in the argument of the logarithm, Eq.
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(1) can be obtained from elementary considerations.

In a completely classical calculation the Coulomb
divergence is corrected by cutting off integrals

at a maximum impact parameter kp, ! and a suit-
able minimum impact 7.
¥min 1S Of the order of the distance at which the
kinetic energy of relative motion of the particles

is equal to the potential energy of their interaction.

At high temperatures, when this distance becomes
less than the de Broglie wavelength of the elec-
trons, it is usual to take 7y, =k *. Our calcu-
lation deals with the high-temperature region.

We can give here only an outline of our calcula-
tional methods which will be discussed in detail
in a later communication. Starting with the re-
cently developed techniques of quantum statistical
perturbation theory in which the conductivity, ex-
pressed as a trace, is represented by a series of
closed Feynman diagrams,®” we have reduced the
calculation to a consideration of open diagrams.
The absorption rate is very simply related to the
conductivity,

y(R)

The diagrams are conveniently ordered accord-
ing to the number of particle-hole pairs (each pair
representing a single-particle excitation from the

=47 Imo(k, w).

equilibrium medium) in the final state as in Fig. 1.

The matrix elements for all contributions to a
given process are then squared and averaged over
final states in essentially the same manner as in
calculating a transition probability. The Landau
damping, which is the decay of the collective state
into a single-particle excitation, is given by Fig.
1(a), while higher order diagrams such as 1(b)
give rise to the correction factor A in Eq. (3).
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FIG. 1. (a) Landau-damping diagram—decay into a
single-particle excitation; (b) higher order correction
to Landau damping; (c) and (d) lowest order collision
damping processes.

Figures 1(c) and 1(d) represent the decay into a
single-particle excitation which then scatters
with another particle to form a final state of two
single-particle excitations, i.e., collision damp-
ing. In addition to Figs. 1(c) and 1(d), two dia-
grams arise in which the labels of both final pairs
are interchanged. The contribution from these
four diagrams is
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where f(x) =[1+ePX]-1, g(x) = [1 -ePx)-1

- 1 2 (4)
- Es) w= (er- €r-kJI ’

=p2/2m - W for electrons and €p=p2/2M - u; for ions, and

L is the chemical potential, the subscripts referring to the species. This result must be divided by 2
for identical particles. When the masses are equal, as in the electron gas, there is a can-
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cellation between the two terms within the abso-
lute value sign for small 2 which explains why
Eq. (2) vanishes as £+ 0. For electron-ion
scattering the first term in the absolute value

is of order m /M compared with the second term
and the result does not vanish as 2 - 0.

The integrals are finite without including the
screening of the interparticle interaction, since
conservation of energy and momentum prohibits
momentum transfers in scattering which are less
than 7ZZkpy. The effect of screening is to change the
argument of the logarithm in Egs. (1) and (2) by a
factor of the order of one. Corrections of higher
order in (kDa/n) arise from diagrams not consid-
ered here.
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It was pointed out by Bardeen and Herring' that
theoretical treatments for diffusion should in-
clude a correction or correlation factor in those
cases where the motion of the diffusing entity
was not completely random. Subsequently there
have been many detailed analyses®~* of correla-
tion particularly as it enters into vacancy dif-
fusion. The formulation of LeClaire and Lidiard?
gave closed form results for those cases where
all the jump possibilities were crystallographi-
cally equivalent, and the correlation between dif-
fusing atom and vacancy that had once parted
company was neglected. Solutions obviating the
above approximation were developed by Compaan
and Haven® using electrical analogs. Schoen® and
Mullen® have been particularly concerned with
the relation between the correlation factor and
the variation of diffusivity with isotopic mass.
The extension of correlation considerations to
anisotropic diffusion has been considered by Man-
ning” and then treated in detail by Mullen.®

It is the purpose of this Letter to point out a
new and simplified technique for calculating the
correlation factor. in the case of vacancy diffusion
which appears to have many advantages. In the
LeClaire and Lidiard approximation, the method
not only gives quite simply the usual closed form
expressions for impurity diffusion in cubic lat-

tices, etc., but also gives coupled equations for
correlation factors in cases of anisotropic dif-
fusion. We start with the basic expressions®
for the correlation factor for Xi, j» which is the
jth component of the ith jump for the diffusing
atom, written as a vector,

(Xi ]'). (Dn(i)

OV L
l,J)
where the subscript #(i) outside the parentheses
numbers the jumps of the diffusing atom which
follow the ith-type jump in question. Let us in-
troduce the vector

5,220, @

f, =1+2 35 a)

’ n=1

which can be thought of as representing the av-
erage final displacement of the impurity at its
present site as a result of exchanges with the
vacancy in question. In general this vector is
closely antiparallel to the last jump that the im-
purity atom made and represents the extent to
which subsequent correlated jumps tend to re-
duce that displacement. One rewrites

fi’j=1+Si°j/(>\z.’j), (1a)
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