
VOLUME S, NUMBER 9 PHYSI C A I. R E V I E %' I.E T T E R S

THEORY OF THE KNIGHT SHIFT IN SUPERCONDUCTORS

Leon N. Cooper~
Department of Physics, Brown University, Providence, Rhode Island

(Received March 5, 1962; revised manuscript received April 10, 1962)

MAY 1, 1962

Observation of a finite Knight shift' in super-
conductors, which indicates that the electron
paramagnetic spin susceptibility does not go to
zero, even at T= 0, has presented a major prob-
lem' for the theory since an electron spin para-
magnetism seems to necessitate the loss of pair
correlation energy; but this pairing energy is
orders of magnitude larger than the magnetic en-
ergy. Several theoretical suggestions have been
made' depending on various effects such as pos-
sible spin-orbit interactions, or electron mean
free paths, but none of these has yet produced
a satisfactory consistent explanation.

In this Letter we present a generalization of
the theory of superconductivity which yields a
finite Knight shift, while making limited modi-
fications in the predictions of the previous theory.
This theory is expected to be valid for weak mag-
netic fields and for samples where the field pene-
tration is complete. It can very likely be extended
to include strong fields and those portions of a
bulk specimen where there is field penetration.

The essential idea is to abandon the pairing of
electrons with identical total momentum for pair-
ings with differing total momentum. That such
a theory could give a finite Knight shift has been
known for some time. (Pipard and Heine' made
this point several years ago. ) The problem has
been to construct a consistent theory which em-
bodies this idea.

This we do in what follows. The restriction
of all the electron pairs to the identical momentum
(zero for the ground state) is necessitated by the
need to couple every pair state to all others (or
at least a large number of others) in order to
form the coherent ground state, and by the con-
servation of linear momentum in the scattering
of electron pairs. The first condition is the
heart of the theory and must be maintained. The
second condition, however, is not necessary un-
less one has translational invariance in the ma-
terial.

In most materials, especially in the tiny speci-
mens under the conditions which have been em-
ployed to measure the Knight shift, there are
very likely sufficient strains, defects, and con-
glomerations of impurities so that the material
is not the same from point to point. Therefore,
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Such changes in total momentum would be pro-
duced if the scattering interaction varied sub-
stantially over distances of 10 ' cm. This does
not seem to be unlikely in the experimental
samples. '

As has been done before, the pair operators,

b =C X , b =C C (2)k -K K' k

are associated with the pair occupation ampli-
tudes n „and P „where, for the ground state 4„
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However, now Tc means (k+ —,'bk) t while -x means
-(k -25k)). The vector 5k is directed along k
and has a magnitude, 5k, which depends only on
the magnetic field (which is in the direction of
the up spin) and on the spatial variation of the
electron-electron interaction. The amplitude
for the occupation or nonoccupation of the pair
states [-(k- —', bk)), (k+ —,'bk)t] are given by o-
and p K. With this connection we have paired
every down spin with an up spin, oppositely di-
rected but with somewhat larger momentum. v

This represents a departure from the usual
pairing of time-reversed states. (See, for ex-
ample, Anderson's paper. 4) If the electron-
electron interaction has some spatial variation,
the loss in correlation energy due to the new
pairing can be compensated by a gain in p.H en-

we need not assume that the electron-electron
interaction is independent of absolute position or
that momentum is conserved in transitions. To
get an idea of how much variation there must be,
we note that the magnetic energies are of the
order of 10 "erg. To explain the observed
Knight shift for such small energies requires
changes of total momentum in electron scatter-
ings of the order of
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ergy so that the pairing proposed above yields
a lower total energy.

Due to the magnetic interaction the Fermi
sphere of up spins swells by —,'5k while the sphere
of down spins contracts by the same amount. The
relation of wave numbers at the Fermi surface is

k =k + —2'5k, k )=k - —2'5k.
fe 2 ' F (4)

If we now include the pairing energy, we obtain
the following for the difference in energy at T=O
between the normal state in zero magnetic field
and the superconducting state in the uniform mag-
netic field H. (We assume complete penetration
and neglect orbital magnetic energies for the
present. )

the theory of superconductivity of spatially non-
invariant electron-electron interactions would

be necessary even in the absence of the Knight-
shift experiments.

The energy of the system is minimized with

respect to hk and 5k/k& —=x. The variation in

hk yields

h-= —,'(1- (;/F. -),k k'
(e2+ g 2)1/2

k k (8)

where ~k satisfies the familiar integral equation:

~-, (~k/k )
6-(6k/k ) = -25~V-, (/)(K/k )

W (H)-W (0)= P 2h-e+ Q (1-h-)2 I&I
8 Pl
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In order to make a rough calculation we assume
that Vk,k(~/k~) varies slowly in ~/kF near
~/ky = 0, and replace ~jk~ by an average val-
ue of total momentum transfer:

+ QV-, (dK/k )[h (1-h )h, (l-h, )]k' k I' k k k' k'
(LUC jk ) = 5k/k =x.I av

(10)

The first line gives the increase in kinetic energy
due to the superconducting correlation, meas-
ured from $&t and $F). The excitation energy
of a normal pair, to a sufficient approximation,
turns out to be just the same as in the absence
of the field:

2E=(e +e )=(8+6 -(p -8 [).

The second line gives the increase in kinetic en-
ergy and the decrease in magnetic energy to
terms of order (5k/kF)2 due to the shift of the
up and down spheres, where N is the number of
conduction electrons of one spin; the third line
gives the energy due to pair correlations. The
scattering matrix element, Vk,k(~/kp), is a
function of the change in total momentum, ~,
in the scattering from one pair state to another.
In contrast to the usual treatment, V is not a
delta function of ~, but. is assumed to vary
smoothly.

This is so because we have relaxed the assump-
tion usually made that the electron-electron in-
teraction is spatia, lly invariant. For the experi-
mental sa.mples there is no reason to doubt that
the tiny variation of the electron-electron inter-
action required to explain the Knight shift would
be present. In fact, similar variations are not
unlikely in bulk materials. Under these circum-
stances an exploration of the consequences on

ep(e)=p(pte) exp(~(p)yQ)

The variation in x yields

(12)

0 = 3NS x- 3 p,HN

+ Q —(-V(x)) [h (1-h )h, (l-h, )]~. (13)
a
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The last term is just the variation in pair cor-
relation energy with change of average total mo-
mentum transfer; a parabolic approximation for
small x gives

„ Bx k k k' k'Q —(-V) [h-(l-h-)h-, (l-h-, )]~=a(H)x. (14)

%e make the usual further assumption that the
interaction is a constant in an interaction region
I & I, I

&'
I (h(d)av. Then Vk k(~/kF) can be re-

placed by

V- -(~/k )=-V(x) I~ I, I~'I ~(hcu)k'k I av

= 0 otherwise.

If we now neglect small differences in the densi-
ties of states at the two Fermi surfaces, we ob-
tain formulas analogous to those of BCS. In par-
ticular (in the weak-coupling limit)
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We thus obtain

(l5)

This gives an electron spin susceptibility in the
superconducting state:

Since it is presumed that the interaction energy
is a minimum when x= 0, a(H) must be positive.
We therefore find that the spin susceptibility is
decreased in the superconductor but is not nec-
essarily zero.

An expression for a(H) can be derived. It de-
pends on the second derivative of eo(x) with re-
spect to x. If this should be zero (no variation
in the interaction energy with the average total
momentum change x}, then the spin susceptibility
in the superconductor will be the same as that in
the normal metal. The precise magnitude of y~
will vary from sample to sample and will depend
on the nonuniformity of the materials. There
should be no marked size dependence and, as-
suming a(H) does not vary rapidly in H, no
marked dependence on the strength of the mag-
netic field. This is in accord with the observa-
tions of Androes and Knight. ' There should be
a relation between the Knight shift and small
shifts in T~.

As to the other properties of superconductors,
a quasi-particle spectrum can be defined; single-
particle excitations will be separated from the
ground state by the energy gap ~; and the ther-
modynamic properties should be quite similar to
previous theory. There will be alterations in the
coherence properties, but it seems that these
will yield quantitative rather than qualitative
changes. In the absence of magnetic fields (if
the scattering matrix elements are a maximum
for zero change of total momentum, which is
likely} the usual BCS state is the ground state.
Thus these considerations apply primarily to
small specimens, thin films, or to the region in
bulk specimens where magnetic fields penetrate.

A more detailed investigation of the conse-
quences of this generalized theory on the various
properties of superconductors: coherence ef-
fects, flux quantization, etc. , is being carried
out.

A final word might be said concerning the deep
mystery in the theory of superconductivity, the
pairing condition; this is somewhat clarified (or

perhaps obscured) by what has been done above.
It seems clear now that the choice of singlet spin
states which is due to the nature of the electron-
electron potential, and the choice of identical
total momentum for each pair which is due to
translational invariance, are not essential. What
is left is the isolation of the interaction to a sub-
set of pairs —or the strong correlation of pairs
of specially chosen electrons. I believe this is
intrinsically related only to the Fermi statistics
which the individual electrons satisfy and is due
to the fact that these statistics seem to prevent,
under the conditions of the problem (weak inter-
action over a small shell surrounding the Fermi
surface), any further correlation than that of
pairs; triplets or larger combinations seem to
be excluded, and the correlation between pairs
is apparently very weak compared to the pair
correlation. A simple model which seems, in
fact, to display these properties will be pre-
sented in the future.
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6It should be emphasized that, in contrast to some
previous attempts to explain the Knight shift which
have relied on modifications of the single-particle
states, due presumably to the small sample size, we
here explore the consequences of an electron-electron
interaction which is not spatially invariant. Thus mo-
mentum is not conserved in transitions and an elec-
tron pair in an eigenstate of total momentum can
scatter into a pair with different total momentum.

That the properties of superconductors are affected
by electron-electron interactions which vary in space
seems to be a direct consequence of observations
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already made tP. H. Smith et al. , Phys. Rev. Letters
6, 686 (1961};see also L. N. Cooper, Phys. Rev. Let-
ters 6, 689 (1961}). The theory discussed in the pres-
ent Letter takes its simplest form if the single-particle
electron states are plane ~aves or Bloch states. But
clearly this is not necessary.

~Small effects due to the curvature of the Fermi

surface have been neglected. There is no need in
principle to do this. A pairing can be introduced, if
necessary, by enumeration of the states and by coup-
ling states as close to total momentum zero as possi-
ble. The device we have employed should not be ele-
vated to the level of a universal principle; it merely
provides a quick way to count the paired states.
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Gor'kov and Galitskii' have proposed one- and
two-particle Green's functions for a supercon-
ductor whose Cooper pairs are in states of non-
zero relative angular momentum. Anderson and
Morel, 2 using BCSs-type states with parameters
which depend on the direction as well as the mag-
nitude of the momentum, start with an isotropic
Hamiltonian but find an anisotropic state, with
an energy gap which vanishes in certain direc-
tions in momentum space. The Gor'kov-Galitskii
model, on the other hand, exhibits an isotropic
energy gap; furthermore, it predicts a lower
free energy than that of the Anderson-Morel
states. However, attempts to construct a wave
function for the isotropic state have so far been
unsuccessful, which leaves unanswered the ques-
tion of whether or not the above-mentioned
Green's functions in fact describe the physical
system. We propose to show that they do not,
by demonstrating the impossibility of construct-
ing a complete hierarchy of Green's functions,
with the first two being given by those of Gor'kov
and Galitskii. (Note that such a hierarchy can
be constructed for the BCS case. )

We introduce the thermodynamic Green's
function, 4

G (1 ~ ~ ~ n 1"~ n')
n

and C~:

G, (12;1 2 )

= G, (ll')G, (22')- G, (12')G,(21')+ Cn(12; 1'2'),

G,(123;1'2 '3 ')

= Q[G, (11')G, (22') G, (33')]+ [C,(12;1'2') G, (33 ')

+ cyclic perm. of (123)+cyclic perm. of (1'2'3')]

+ C,(123;1'2'3'), (2)

where 0.'is the antisymmetrization operator for
primed and unprimed indices separately. The
interaction term in the reduced Hamiltonian is
effective only for scattering pairs of opposite
momenta. Thus a single-particle excitation
has infinite lifetime. Then since t", corresponds
to the observation of the evolution of an odd num-
ber of excited particles, at least one of these
must propagate freely, and C, =O —at least at
zero temperature. We note that the remaining
G, contains the properly antisymmetrized com-
bination of each of the terms appearing. This
approximation breaks off the infinite set of
coupled Green's function equations of motion;
we find

. n Tr(e= (-i)
-P(H- pN) 7'[~(1)~ ~ ~ e(n) V'(")" V'(1')]&

( -p(H- PN))
= 5(l-l')- —(l3 i V i45)C2(45;1'3)+O(l jQ),

where H - p N is the reduced Hamiltonian, the
indices refer to space-time points, P is the in-
verse temperature, and T is the Wick time-
ordering operator. We also find it useful to de-
fine the dynamical correlation functions ~' C,

2

i—+ ' C (12 1'2')
et, 2m

=—(13 I V ] 45)C2(45; 1'2') G(23)+ O(1/0). (3)
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