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Optical studies' 'on KC1 have shown a relation
between the optical absorption band at 589 my. ,

the A band, and the sodium impurity content of
the crystal. The A centers are present after
short illumination times of the g centers in a
freshly quenched crystal. Studies with polarized
light have shown that the A centers can be polar-
ized in a [100]direction and have a second optical
absorption band under the I band. It has been
proposed' 'that the A center is an E center asso-
ciated with a Na ion in one of the six nearest
neighbor positions. This Letter reports an op-
tical study of a similar center in which the P
center is associated with a lithium' impurity and

an electron nuclear double resonance (ENDOR)
study that verifies the general A -center model
of an P center associated with an alkali impurity.

Figure 1 shows the optical absorption bands
that result when a KCl crystal is grown with 1$
LiC1 in the melt and then additively colored to a
concentration of 3xl(P E centers/cc. Curve 1

of Fig. 1(a) is the &-center absorption band that
is present after the crystal is quenched from
650'C to room temperature and then measured
at -180'C (all measurements were made at liquid

0, temperature). Curve 2 of Fig. 1(a) is obtained
after five minutes exposure at room temperature
to green light centered at 546 mp, . The effects
of polarizing the A centers with 546-mp, light po-
larized along a [100]direction is shown in Fig.
1(b). Curve 1 is obtained with [010]polarized
measuring light and curve 2 with [100] light.

If the axis of the A center is taken to be the line
from the vacancy to the impurity, then the A, band
is excited by light with electric vector perpendic-
ular to the axis of the center and the A, band is
excited by light with electric vector parallel to

the axis (see reference 1 for a general discus-
sion). Table I compares the peak positions of
the optical absorption bands in KCl containing
Na to those in KCl containing Li.

The results of an ENDOR study of the lithium
A center are shown in Fig. 2. The meaning of
the notation above the ENDOR line is as follows:
The +, - superscripts indicate the state of the
electron, m~ =+', the II, i subscripts indicate
the angle between the magnetic field and a line
from the vacancy to a given nucleus; the K& nu-
cleus is the single potassium opposite the lithium,
i.e. , on the axis of the center, and the Kp nuclei
are the four potassiums located in the plane per-
pendicular to the axis of the A center.

The ENDOR spectrum of the nearest neighbor
potassium nuclei of the E center in a quenched
crystal is shown in Fig. 2(a). After an optical
treatment similar to that used to produce curve
2 of Fig. 1(a), the ENDOR spectrum appears as
given in Fig. 2(b). One interesting feature is the
K~ II

quadrupole triplet which consists of three
sharp lines. They are about one-half as high as
the K~ II

lines although there are only one-fourth
as many K~ nuclei as Kp nuclei. The explanation
is that the K nucleus is opposite the Li and,
therefore, has no equivalent nucleus to produce
the second order hyperfine interaction~' that
gives the additional fine structure to the Kp fI

quadrupole triplet. This explanation is verified
in Figs. 2(c) and 2(d). In Fig. 2(c) the A centers
have been polarized with their axes parallel to
the magnetic field and there are strong K~ II

II
lines present with very weak K

II
and

Liz lines. In Fig. 2(d) the crystal has been ro-
tated 90' and the centers are then perpendicular
to the field. The relative intensities are just re-
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versed. [The state of the electron, m~=--', for
the Li ENDOR lines was determined by measur-
ing the shifts in the ENDOR frequencies when the
magnetic field was set to the high- and low-field
sides of the electron spin resonance line. The
Li lines were not observed because they occur
in a low-frequency region where there are many
ENDOR lines of the chlorine nuclei. ]

If the hyperfine interaction of a given nucleus is
axially symmetric (this is not necessarily true
for all of the nuclei but will suffice for the pres-
ent discussion), then to first order in the hyper-

Table I. Absorption peaks of Na A center and Li A

center in KCl at -180'C.

F (mp) A2 (mp) A& (mp)

KCl-Na

KC1-Li

540

540

528

553

589

629

a
Taken from reference 1.

fine constants the ENDOR frequencies are given
by' '
hv=+g, PHD+2[a+b(3cos'n-1)]+@'(3cos'a -1)(m -z).

1.2

10

The first term represents the interaction of the
nucleus with the applied field HD. The "a" term
is a measure of the electron spin density at the
nucleus, i.e. , the isotropic Fermi contact inter-
action, the "5"term is the anisotropic dipole-
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FIG. l. Optical absorption bands in additively colored,
lithium-doped KCl at -180 C. (a) Curve 1 is for F cen-
ters in crystal after quench from 650'C to room temper-
ature. Curve 2 is for A centers in crystal after five
minutes irradiation by 546-mp light (-10 photons/sec-
cm2) at room temperature. (b) Curve 1 shows the ab-
sorption of f010) polarized light after polarizing A cen-
ters at -180'C with [100] polarized 546-mp light. Curve
2 shows the absorption of [100] polarized light. (The
small peak at 550 re is caused by some F centers and
less than 100 k alignment of the A centers. )
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FIG. 2. ENDOR lines of nearest neighbors of F cen-
ters and A centers in lithium-doped KCl at -180'C with
Bp parallel to f100]. (a) F centers in crystal after quench
from 650'C to room temperature. (b) A centers in crys-
tal after five minutes irradiation by 546-mp, light at room
temperature. (c) A centers polarized parallel to Hp.
(d) A centers polarized perpendicular to Hp.
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Table II. Nearest neighbor hyperfine constants of I:
center and A center in KCl.

Center

a
KCl: F center

KCl, Li: A center

Nucleus a (Mc/sec) b (Mc/sec)

K

K

Ll

20. 77

23.71{5)

24.59

8.03

0.94(5)

0.99

0.92(5)

0.63

Taken from reference 6 .

dipole interaction between the electron and nu-
cleus, and the angle n is the angle between Il,
and a line from the vacancy to the nucleus. The
last term is the quadrupole interaction that gives
the potassium triplets in Fig. 2 but, since the
quadrupole splittings are about the same for the
I' center and A center, the quadrupole term is
not considered in the discussion to fol.low.

The hyperfine constants for the lithium A cen-
ters are compared to those of the unperturbed E
center in Table II. Since the "a"hyperfine con-
stants for the A-center potassiums are about 15-
20$ higher than for the P center, the A center
cannot be described by simply mixing some p
function into the ground state of an g center in
an undistorted lattice. Using the "arnplification
factors, " which are obtained when the F-center
wave function is orthogonalized to the ion-core
wave functions„as given by Gourary and Adrian, '
and assuming that the K and Li nuclei are equi-
distant from the vacancy, the predicted ratio of
the a values is a(Li)/a(K ) = 0.73 whereas the ex-
perimental ratio is 0.34. This indicates that the
lithium has been pushed array from the vacancy.
Nevertheless, it may not be valid to assume that
the effects on the a values of orthogonalizing the
A-center wave function to the ion cores can be
correctly accounted for by using the E -center
amplification factors. Also, there are appreci-

able differences between the theoretical and ex-
perimental a values for I centers. A more reli-
able indication that the Li ion has moved away
from the vacancy is given by the b value. Since
the Li ion has no p electrons, the 5 value is given
by the classical dipole-dipole interaction between
the electron and the lithium nucleus. ' lf the e1.ec-
tron is taken as a point dipole centered in the va-

0
cancy, then the experimental 5 value gives 3.65 A
for the distance from the Li nucleus to the vacancy
center. The distance between ions in a perfect
KC1 lattice is 3.14 A; if the Li ion were permitted
to move out until it touches the next Cl ion, then

0
the vacancy-lithium distance would be 3.70 A.
Nevertheless, an integration of the dipole-dipole
interaction over an assumed wave function changes
the results considerably. Table III gives a com-
parison of the theoretical and experimental 5 val-
ues for the F center in LiF and the Li A center
in KCl. The A -center calculations assume an un-
distorted type III Gourary and Adrian F -center
wave function. The table indicates that detailed
A -center wave-function calculations including ex-
change would also show that the Li ion is displaced,
but perhaps not as far as indicated by the simple
point dipole -dipole calculation. Further consider-
ation of the hyperfine constants requires detailed
wave-function calculations for the A center.
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Table III. Experimental and theoretical lithium b values.

Vacancy-
nuclear distance

(A)
b (Mc/sec}

Point dipoles
b (Mc/sec}

Type III
b (Mc/sec)
Exchange

b (Mc/sec)
Exp,

KCl-Li

KCl-Li

2.01

3.14

3.70

0, 99

0.60

2.0

0.62

0.50

2.8

0.63

0.63

aTheoretical values from reference 8. Experimental value from reference 5.
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Bloembergen and others' have shown that upon
application of a dc electric field on certain crys-
tals containing nuclei with electric quadrupole
moments, one ean cause a shift of the nuclear
resonance frequency. Further, Bloembergen'
suggested that transitions between the spin levels
of a nucleus in such crystals might be induced by
application of electric rf fields at the proper fre-
quency. Ludwig and Ham' have recently observed
an analogous effect in electron resonance experi-
ments.

We investigated the resonances of Ga", Ga",
and As" in GaAs. The experiments were per-
formed at liquid nitrogen temperature to mini-
mize the competition of the thermally induced
spin transitions. A GaAs single crystal of high
resistivity but unknown orientation was placed
between two copper plates and the a.ssembly was
placed in the coil of a standard single-coil, pulsed
induction system. The free -induction decay fol-
lowing a magnetic 90' pulse was observed at 6.77
Mc/sec. An rf generator tuned to 13.54 Mc/sec
was connected to the copper plates in order to in-
duce Am = +2 transitions. The static magnetic
field in which the resonances were observed, the
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magnetic rf field, and the electric rf field were
mutually perpendicular. A decrease of the free-
induction signal of all three isotopes was observed
for 90' pulses immediately following an appropri-
ate electric excitation of the copper plates. A
typical result is shown in Fig. 1. The saturation
of the resonances as a function of the applied rf
voltage is given in Fig. 2.

Since the linewidths of all three resonances are
the same, the amplitude M~ of the free-induction
decay is simply4

M =M /(1+kW T ),

FIG. 1. Typical free-induction decays of Gaso, with
and without rf electric field. Horizontal: 100 @sec/div.
Vertical: 5 V/div.

FIG. 2. The experimental points are measured values
of the ratios of the amplitudes of the free-induction sig-
nals with and without the saturating electric field on.
The curves are graphs of the function 1/(1+@V ), where
V is the amplitude of the applied rf saturating voltage,
and n is chosen for the lower curves to give the best fits
to the Ga~~ and the As~~ points. The upper, dashed,
curves are calculated for Ga and As, relative to the
best-fit curve for GaT~, assuming a purely magnetic
interaction.
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