
VGLUME 8, NUMBER 8 PHYSICAL RKVIKW LKTTKRS Aparr. 15, 1962

HIGH-ENERGY NUCLEAR SCATTERING AND REGGE POLES

Bhalchandra M. Udgaonkar~
Lawrence Radiation Laboratory, University of California, Berkeley, California

Murr ay Gell-Mann
California Institute of Technology, Pasadena, California

(Received March 26, 1962)

It has been suggested' ' that Regge pole terms
dominate the high-energy behavior of two-body
scattering amplitudes involving pions, nucleons,
etc. It is possible'" to interpret the available
data on m-N, N-N, N-N, and K-N scattering in

terms of the Regge pole hypothesis, with the as-
sumption that all processes in which the quantum
numbers of the vacuum can be exchanged are
dominated at high energies by a particular term.
This "Pomeranchuk-Regge term" is supposed to
have nP(0) =1, where nP(t) is the position of the

Regge pole in the angular momentum plane as a
function of t, the exchanged mass squared. Any
elastic scattering amplitude, ' say for particles
X and Y, has the form
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When the energy is not quite so high, we must
include in the scattering amplitude terms corre-
sponding to other Regge poles, associated with

p, ~, etc. In this way, one can understand and
correlate' the observed deviations from constant
total cross sections in the region of 5-20 Bev.
For simplicity, we shall concentrate on the dom-
inant Pomeranchuk term. We now drop the indi-
ces P, X, and Y.

The angular distribution in the diffraction scat-
tering peak can be read off from Eq. (1). Knowing

at high energies near the forward direction. Here
s is the total mass squared in the reaction X+Y

X + Y and so is an arbitrary parameter with the
same dimensions. The total cross section at high
energies is

o = -lmT (s, 0)js =b (0),XY
™
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a constant, because of the assumption that nP(0)
=1. In fact OX Y must be the product' of a factor
depending on X times a factor depending on Y:

T(s, t) = ios e-xp[et ln(s js,) ], (4)

that clearly exhibits the shrinking of the diffrac-
tion peak. The CERN data on p-p scattering seem
consistent4 with Eq. (4).

The shrinking corresponds to an increase of ra-
dius and of transparency such that the total cross
section remains constant. Mathematically, we
may put

T = 8wig(-21+1)P (1+t/2s)(1 -e t)
2i5

l
l

at high energies. We turn the sum over l into an
integral, introduce the impact parameter D =2ls "',
and use Pt(1+t/2s) =J0(DK-t). We then calculate
F(s, t), an amplitude such that dn/dt = [E(s, t) ['.
For N-N scattering at high energies we have I'
=(-4sv'w) 'T and so

iF =
~ 2mDdD [1 -S (s)]J (Dv -t)

2/w D 0

d'D 1-$ s exp iD q, (6)

where SD(s) =e t and q = -t. Now, using the in-2i5

verse Fourier transform, we may employ either
the exact asymptotic expression (3) or the approx-
imate expression (4) to obtain the absorption coef-

that a increases with t, which is negative for
physical momentum transfers, we see that the
diffraction peak becomes narrower with increas-
ing ene rgy. Putting

B(t) —= b(t)i(1+exp[-inn(t)]][b(0)] '[sinmn(t)] ',

we have in general,

T(s, t) = iosB(t)(-s/s, )
n(t) -1

A rough description can be obtained if, for a suit-
ably chosen s„we suppose that B(t) varies slowly
compared with (sjs,)n(t). Then for small t, set-
ting e =—n'(0), we have n -1= et and B(t) =1. We
thus obtain the "exponential approximation, "
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ficient 1 -SD(s) for impact parameter D:

o. -' -1&-d&(s)=, fd'S(s/s ) SS(-S)exp((D e),

1 -S (s) =, (f'q exp[-eq'ln(s/s )]exp(iD q)
D 8m 0

am
=—[e ln(s/s )] ' exp(-D'[4e 1n(s/s )] 'j.

0 0

(8)

The logarithmic increase of radius squared and
of transparency is obvious. The elastic scatter-
ing cross section, using the approximation of Eq.
(8), is just

cr @all. -S s I'=

energy N-nucleus scattering. (The same consid-
erations will of course apply to nuclear scattering
of v and K mesons. )

We employ the semiclassical ray method, which
should be valid in our energy range, »1 Bev. We
ignore the velocities of the particles in the nucleus,
so that s is always computed for the incoming nu-
cleon and any one target nucleon considered as be-
ing at rest in the nucleus, The probability distri-
bution ~ pl' of the nucleon positions is integrated
over the z coordinates so as to give a probability
distribution P(p„p„~ ~ ~ ) of two-dimensional vec-
tors p„ i =1, ~ A. Then the transmission coef-
ficient SDA(s) for the nucleus is just the averaged
product of the transmission coefficients for the in-
dividual nucleons:

S~ (s) f ~ ~ f d =S ~ ~ ~*d'S Ptp, p, ~ ~ )

which tends to zero as s-~.
So far, we have discussed only the scattering of

particles which have no "anomalous thresholds. "
Now we turn to systems with anomalous thresh-
olds, like nuclei. Such a system, with mass M,
can dissociate virtually into two parts with masses
M, and M„where (M, +M,)'&M'&M, '+M, '. More
concretely, we may say that the system with anom-
alous thresholds has a wave function which extends
out in space a distance L, where L' is greater
than the sum of the squares of the Compton wave-
lengths of the parts. A system with very promi-
nent anomalous thresholds, like a nucleus, can
be treated approximately as a composite system
described by a wave function referring to the co-
ordinates of the component parts.

Using such a description for a nucleus and as-
suming the Regge pole hypothesis for N-N scat-
tering, let us compute the properties of high-

A

xP S - - (s). (10)ID - p. l2=1

This expression can then be substituted into a for-
mula analogous to Eq. (6) to give the total cross
section and diffraction peak in N-nucleus colli-
sions.

As a simple example, let us take the deuteron.
%e put the center of mass at the origin so that
p, =p/2 and p, =-p/2, where p is the two-dimen-
sional relative coordinate. Let the wave function
(ignoring spin) be g(p, z) and put

G(p') =J «f ~'p ~0~'exp(tp p).

Then the scattering amplitude and total cross sec-
tion, with the use of Eqs. (6), (7), and (10), come
out:

F = 2«( t/4)B(t)(s js.)-- . & t &(p )B(-(q/2 -p) )
A a (t) - 1 (T' 2 2 2

4 m' 8m

B(-( /2+ )2)( j )u(-(q/2 -p)')+o(-(q/2+p)') -2
0 (12)

o =2()-,Re d p G(p )[B(-p )] (s/s())
A g 2 2 2 2 2o'(p) -2

8m

We note that besides the Pomeranchuk-Regge pole term (with coefficient, in the forward direction,
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twice as large as in N N-scattering), there is an
eclipse term in the form of a continuous line of
Regge poles. These form a cut along the real
axis of the angular momentum plane extending
up to a point that approaches unity from below,
like n itself, when t approaches zero from nega-
tive values. At very high energies, the eclipse
term, at t =0, vanishes like [ln(s/s, )] ' and we

are left with a total cross section equal to 2(T.

That is clearly correct, since each nucleon has
become highly transparent. At moderate ener-
gies of a few Bev, the eclipse term is just the one
studied by Glauber. '

Now, let us treat a heavy nucleus, assuming
that the nucleons are independent particles bound
to a center at the origin. From E{l. (10) we ob-
tain

SD (s) = g d P I' (P.)S .- , - (s),
z i s ID-p I4=1

and, using E{l. (7),

A ( 2 o {" 2 .- - - 2 a(-q')-1)
1 -S (s) =1 — g i

1 —
] d p P.(P.)., i d q(exp[i[1'(D P.)]}-B(- q)(s/s )D . i J i i i 8]]' Z 0g=1

(14)
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The total cross section is just

A "
2 A

g (s) =2 d D 1 -Re exp T(s)-
D

(16)

With 0 =40 mb experimentally, we note that for a
nucleus of any size the individual absorption coef-
ficients v are less than R(TIP (0) «1, so that we

may replace 1-T by e Ti, obtaining

A A
1 -S (s) =1 -exp[-7 (s)],D D

while the absorption cross section is easily seen
to be given by the formula

A 2
o (s)= d D 1- exp 2r (-s) . (18)abs D

For actual evaluation, let us make the exponen-
tial approximation (4) for the N Nscatte-ring am-
plitude, putting B=1 and n =1+et. For the nucle-
on density, we use a uniform model with a sharp
cutoff at radius RA, which gives

ZP. (P) =A(i~RA') '2(RA' -P')"'rl(RA' P') (19-).

Putting D =D/RA and p =[4]{eln(s/s0)](]{RA ) i,
we obtain

A 2~ 2-1 —2 2o (s) =2)TR [ 2DdD 1-exp -oA 2vR Q(D, P )
0

(20)

o (s) =]{R 2DdD 1 -exp -&xA ]{R qd(D, P )
A 2 —— 2-1 —2 2

with

p(D' p') =[qssR 1n(s/s )] 'f d'pq(R '-p'1"'n(R '-p')exp{ (D -p)'/[441n(s/s ]]-
=SP '[exp(-D'P ')]f pdp(1-p')"'[exp(-p'd ')]1 (2Dpd ') (22)
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At very high energies or large P', Q becomes
very small everywhere fQ =P 'exp(-O'P ')], so
that the exponential may be expanded and the inte-
gral over D performed. Both cross sections then

become just oA, as they must in the limit of infi-
nite energy. At very low energy or small P', we

have P ~ q(1 -D2)~'q(1 -D') and the cross sections
become 2mR~' and mR~', respectively, plus cor-
rection terms that vanish with vRA /oA. Again

that is what we expect. The transition region may
be investigated numerically.

For gA/mR '= (12)+' (nuclei around carbon),
we have calculated g b at p =0.05, 0.15, 0.30,abs
and 0.45. With the rough assignments e =1 Bev '
and s, = 2 Bev' of reference 4, these values of P'

correspond to laboratory energies of 10, 10', 10',
and 10' Bev, respectively. Of course the energy
for a given P' is very sensitive to e and s„which
are badly known. The values of v b

A/mR' come
out to be 0.98, 1.10, 1.22, and 1.33, showing a
very gradual approach to the asymptotic value of
2.29. Mathematically, the slowness of the ap-
proach to the high-energy constant cross section
is associated with the appearance of a Regge cut
instead of merely Regge poles.

For vA/vRA'= (216)+' (nuclei around lead), we

have calculated vabs at P =0.007, 0.021, 0.042,
and 0.063, corresponding roughly to the same en-
ergies given above for carbon. The values of

aab A/mR2 are 1.05, 1.14, 1.24, and 1.32, re-
spectively. Here the asymptotic value of 6 is ap-
proached even more gradually.

In general, for a system of many nucleons, a
sizable fractional increase of cross section re-
quires the effective nucleon area to be comparable
with the area of the system (P'=1). Thus, even
for a light nucleus, enormous energies are re-
quired for the increase to be easily observable.

However, at the highest cosmic-ray energies,
the effect may be of importance. At 10' Bev,
treating air like carbon, we predict a, 25@ in-
crease in the absorption cross section of air over
the value at 10 Bev. It is interesting that Nikolskii
et al. ' have reported a change in the character of
extensive air showers in the same energy region,
indicating an increase in the absorption coeffi-
cient of air. The result has not been confirmed
by other laboratories.
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