METHOD FOR MEASURING THE DECAY WIDTH OF THE ω MESON*

J.J. Sakurait

California Institute of Technology, Pasadena, California (Received March 15, 1962)

We propose a method for measuring the (partial) width Γ of the decay

$$
\omega^0 \to \pi^+ + \pi^- + \pi^0, \tag{1}
$$

using the fact that the cross section for

$$
\pi^- + \pi^0 \to \omega^0 + \pi^-
$$
 (2)

is related to Γ in a fairly model-independent way. The cross section for (2) turns out to be of the order of a millibarn for a width Γ of a few hundred kev at about 200 Mev $(c.m.)$ above the threshold. The well-known Chew-Low extrapolation method' may be used to deduce the desired cross section for (2) from a study of the reaction

$$
\pi^- + p \rightarrow \pi^- + \omega^0 + p. \tag{3}
$$

We discuss the processes (1) and (2) under two extreme dynamical assumptions. First we assume that the ω -3 π vertex is zero-ranged in the sense that it is given by the centrifugal barrier alone as follows:

$$
\left(f_{\omega 3\pi}/m^3\right)\epsilon_{\mu\nu\lambda\sigma}\epsilon_{\mu}^{(\omega)}k_{\nu}^{(+)}k_{\lambda}^{(-)}k_{\sigma}^{(0)},\qquad(4)
$$

where $k_{\nu}^{\; (+)},\,\,k_{\lambda}^{\; (-) },\,\, \text{and}\,\,k_{\sigma}^{\; (0) }$ refer to the pion four-momenta, and $\epsilon_{\mu}^{(\omega)}$ stands for the polariza tion vector of the ω meson. The factor m^3 is inserted to make the coupling constant $f_{\omega 3\pi}$ dimensionless. The decay width Γ can be calculated to be'

$$
\Gamma = \left(\frac{f_{\omega 3\pi}^{2}}{4\pi}\right) \left(\frac{(m_{\omega} - 3m_{\pi})^{4} m_{\pi}^{2} m_{\omega} U(m_{\omega})}{2^{6} \times 3^{3} \times 3^{1/2} \pi m^{6}}\right),
$$
 (5)

where $U(m_{\omega})$ is a relativistic correction factor which approaches unity as $m_\omega \rightarrow 3m_\pi$. For m_ω . =787 Mev, we find numerically that $U \approx 1.6$. The differential cross section and the total cross section for (2) are given by

$$
d\sigma/d\Omega = (f_{\omega 3\pi}^2/4\pi)\rho_i \rho_f^3 \sin^2\theta/16\pi m^6, \qquad (6)
$$

$$
\sigma = (f_{\omega 3\pi}^{2}/4\pi)p_{i}^{2}p_{f}^{3}/6m^{6},\qquad(7)
$$

where p_i (p_f) is the momentum of one of the incident (outgoing) particles in the center-of-mass system. For a Γ of 400 kev, we obtain a cross section of 4.0 mb at a total c.m. energy of 1.¹ Bev (173 Mev above the $\omega\pi$ threshold). For a total c.m. energy ≥ 1.2 Bev, the predicted cross section with Γ =400 kev becomes comparable to the p -wave unitarity limit for inelastic processes, $3\pi\lambda^2$, so that the zero-range model must break down.

The most general expression for the ω -3 π vertex with all particles on the mass shell is of the form

$$
\mu\nu\lambda\sigma^{(\omega)}k_{\nu}^{(+)}k_{\lambda}^{(-)}k_{\sigma}^{(0)}F(x,y),
$$

where x and y are two independent invariant scalars that can be constructed from the external four -momenta. In the zero-range model considered in the preceding paragraph, $F(x, y)$ has been taken to be constant. In contrast, Gell-Mann, Sharp, and Wagner³ suggest a model of ω decay in which the dispersion representation for $F(x,y)$ is assumed to be dominated by ρ -meson intermediate states. We call this the ρ -dominance model since we can visualize the decay interaction as proceeding via

$$
\omega + \rho + \pi, \tag{8}
$$

followed by

$$
\rho \to 2\pi. \tag{9}
$$

Factors that enter in a diagram at the vertices (8) and (9) are, respectively,

$$
\left(f_{\omega\rho\pi}/m\right)\epsilon_{\mu\nu\lambda\sigma}\epsilon_{\mu}^{(\omega)}k_{\nu}^{(\omega)}\epsilon_{\lambda}^{(\rho)}k_{\sigma}^{(\rho)}\tag{10}
$$

and

$$
f_{\rho\pi\pi}\epsilon_{\mu}^{(\rho)}\left(k_{\mu}^{(\pi1)}-k_{\mu}^{(\pi2)}\right).
$$
 (11)

We then have³

given by
\n
$$
\omega 3\pi^{2/4\pi} p_{i}^{3} \sin^{2}\theta/16 \pi m^{6},
$$
\n(6)
$$
\Gamma = \left(\frac{f_{\omega\rho\pi}^{2}}{4\pi}\right) \left(\frac{f_{\rho\pi\pi}^{2}}{4\pi}\right) \left(\frac{m_{\omega}m_{\pi}^{2}(m_{\omega}-3m_{\pi})^{4}W(m_{\omega})}{12 \times 3^{1/2}(m_{\rho}^{2}-4m_{\pi}^{2})^{2}m^{2}}\right),
$$
\n
$$
= (f_{\omega 3\pi}^{2/4\pi}) p_{i}^{3} p_{j}^{3/6m^{6}},
$$
\n(7)

where $W(m_{\omega})$ is a relativistic correction factor which has been numerically estimated to be about 3.6 at m_ω =787 Mev. The constant $f_{\rho\pi\pi}^2/4\pi$ is about 2 for a ρ width of 100 Mev; the only remaining constant, $f_{\omega\rho\pi}^2/(4\pi m^2)$, can be estimated from

the π^0 lifetime à la Gell-Mann and Zachariasen⁴ if the ω and ρ are coupled universally to the conserved hypercharge current and the isospin current⁵ with the coupling constants f_0 and f_ω , or, equivalently, if ω and ρ dominate the dispersion integrals for the isoscalar and isovector charge form factors for every strongly interacting particle. The coupling constant for π^0 decay, defined as in Eq. (10) , can then be written as

$$
f_{\pi\gamma\gamma} = e^2 f_{\omega\rho\pi} / f_{\rho} f_{\omega}.
$$
 (13)

From these considerations and unitary symmetry⁶ (which requires $f_{\rho}^{2}/4\pi = \frac{4}{3}f_{\omega}^{2}/4\pi$), Gell-Mann,
Sharp, and Wagner³ estimate $\Gamma \sim 400$ kev.

Along similar lines we can discuss the ω production process (2) by keeping only one- ρ -meson states that appear in the s , t , and u channels. In this ρ -dominance model, the production cross section directly measures the product $f_{\omega \rho \pi} f_{\rho \pi \pi}$, hence Γ . The differential cross section is given by

$$
\frac{d\sigma}{d\Omega} = \left(\frac{f_{\rho\pi\pi}^{2}}{4\pi}\right) \left(\frac{f_{\omega\rho\pi}^{2}}{4\pi}\right) \left(\frac{\rho_{i}\rho_{f}^{3}\sin^{2}\theta}{m^{2}}\right)
$$
\n
$$
\times \left[\frac{1}{\sqrt{1-\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}}\right]^{2} \tag{14}
$$

 $\times \left[\frac{1}{s-m_{0}^{2}} + \frac{1}{t-m_{0}^{2}} + \frac{1}{u-m_{0}^{2}} \right]$

where⁷

$$
s = 4E_{\pi i}^{2},
$$

\n
$$
t = 2m_{\pi}^{2} - 2E_{\pi i}E_{\pi f} + 2p_{i}p_{f}\cos\theta,
$$

\n
$$
u = 2m_{\pi}^{2} - 2E_{\pi i}E_{\pi f} - 2p_{i}p_{f}\cos\theta,
$$

\n
$$
E_{\pi i} = (p_{i}^{2} + m_{\pi}^{2})^{1/2}, \quad E_{\pi f} = (p_{f}^{2} + m_{\pi}^{2})^{1/2}.
$$

The expression (14) can be integrated analytically to give the total cross section as a function of energies. The numerical results are shown in Fig. 1 where the solid curve represents the ω production cross section expected for Γ = 400 kev. Also shown is $3\pi\lambda^2$ (dashed curve).

We may remark that for a given value of Γ , the ρ -dominance model predicts a cross section four times smaller than the zero-range model at $s^{1/2}$ $= 1.1$ Bev. If we are to choose between the two models, the ρ -dominance model is probably the more reasonable. In any case, it is gratifying that at least the order of magnitude of Γ can be determined from the production cross section in a model-independent way.

FIG. 1. The solid curve represents the cross section for π^- + π^0 $\rightarrow \omega + \pi^-$ for Γ = 400 kev as predicted by the ρ -dominance model. The dashed curve represents the *p*-wave unitarity limit for inelastic processes, $3\pi\lambda^2$.

It is hardly necessary to emphasize that the well-known Chew-Low method¹ can be used to extract the desired cross section for (2) from a study of the reaction (3). If the ω width is really of the order of 400 kev or greater, experiments along this line seem feasible in a hydrogen bubble chamber with a π ⁻ beam of $p_{\text{lab}} \sim 2-3$ Bev/c.⁸

It is a pleasure to thank Professor Murray Gell-Mann for his hospitality extended to the author at the California Institute of Technology.

⁴M. Gell-Mann and F. Zachariasen, Phys. Rev. 124,

^{*}Work supported in part by the U.S. Atomic Energy Commission.

^TPermanent address: Enrico Fermi Institute for Nuclear Studies and Department of Physics, University of Chicago, Chicago, Illinois.

¹G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959) .

² Equation (5) does not agree with Eqs. (3) and (4) of G. Feinberg [Phys. Rev. Letters 8, 151 (1962)]. Our expression does agree with the $m_{0} \rightarrow \infty$ limit of Eq. (1) of reference 3.

³M. Gell-Mann, D. Sharp, and W. D. Wagner, Phys. Rev. Letters 8 , 261 (1962). Thanks are due to the authors of this reference for many helpful discussions.

953 (1951).

 5 J. J. Sakurai, Ann. Phys. (New York) 11 , 1 (1960). 6M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20, 1961 (unpublished); and Phys. Rev. 125, 1067 (1962). See also Y. Ne'eman, Nuclear Phys. 26 , 222 (1961). If the ρ is coupled to twice the isospin current, and the ω to $\sqrt{3}$ times the hypercharge current, then the couplings of ρ

and ω become "universal" in the unitary symmetry limit. Note that our f_{ρ} is equal to $2\gamma_{\rho}$ of Gell-Mann. **Recall also the well-known relation** $s + t + u = 3m_{\pi}^{2}$

 $+m_{\omega}^{2}$.

 16 ⁸The reaction (3) is currently being studied by the Wisconsin and the Berkeley hydrogen bubble-chamber groups. This work has been stimulated in part by their experimental programs.

E RRAT UM

DECAY MODES AND WIDTH OF THE η MESON. Pierre L. Bastien, J. Peter Berge, Orin I. Dahl, Massimiliano Ferro-Luzzi, Donald H. Miller, Joseph J. Murray, Arthur H. Rosenfeld, and Mason B. Watson [Phys. Rev. Letters 8, 114 (1962)].

On page 116, ninth line of text, $\Gamma(\pi^+\pi^-\pi^0)$ should read $\Gamma(\text{all modes})$.

In line 16 of the legend of Fig. 1, $\sigma(K^- p \rightarrow \Lambda \pi^0 \pi^0)$ should read $\sigma(K \hat{n} + \Lambda \pi^0 \pi^+)$.

In the ninth line of the legend of Fig. 2, $K^-p \rightarrow$ $\Lambda \pi^+\pi^-\pi^0$ should be replaced by $K^-d \rightarrow p\Lambda \pi^+\pi^-\pi^-$.