## SEARCH FOR $\rho$ -MESON DECAY INTO $\eta + \pi^*$

Arthur H. Rosenfeld, D. Duane Carmony, and Remy T. Van de Walle<sup>†</sup> Lawrence Radiation Laboratory, University of California, Berkeley, California (Received February 28, 1962)

Pevsner et al.<sup>1</sup> discovered a meson of mass 550 Mev which decays into  $\pi^+\pi^-\pi^0$  and has isospin = 0.<sup>2</sup> They called it  $\eta$ , the name given by Sakurai to his proposed second vector meson (i.e., a meson whose spin, parity, and G parity we write as  $1^{-}$ ).<sup>3</sup> However, any I=0 configuration of three pions must be antisymmetric in all pairs of pions. The original data were insufficient to make this test, but Bastien et al. later reported additional  $\eta$ events whose Dalitz plot tended not to satisfy this I=0 symmetry.<sup>4</sup> Their alternative postulate was that  $\eta$  had positive G parity and that the G-forbidden decay  $\eta - 3\pi$  occurred only because virtual photons carry off one unit of isospin. They concluded that Dalitz plots did seem to rule out all assignments except  $1^{--}$  and  $0^{-+}$ , and that, of these two,  $0^{-+}$  fit their data slightly better. At about the same time, Feinberg (prior to publication of the  $0^{-+}$  evidence<sup>4</sup>) pointed out that the  $(1^{-}) \eta$  should be present in a so far unreported mode of  $\rho$  decay,  $\rho \neq \eta$  $+\pi$ .<sup>5</sup> We find experimentally that this mode has a branching fraction  $f_{n\pi}$  less than 0.6% and point out that this may be evidence that  $\eta$  has even G parity, i.e., is 0<sup>-+</sup>.

It is well established that  $\rho$  is a 1<sup>-+</sup> meson with mass 750 Mev, width  $\Gamma \simeq 100$  Mev, and a two-pion decay mode,

$$\rho^+ \to \pi^0 + \pi^+, \tag{1}$$

via a p wave. Each  $\pi$  has a c.m. momentum  $p_{\pi}$  = 350 Mev/c. If  $\eta$  is 1<sup>-7</sup>, then the  $\eta\pi$  decay mode of  $\rho$  is allowed,

$$\rho^+ \star \eta + \pi^+, \qquad (2)$$

again via a p wave with p = 123 Mev/c. A crude estimate of the decay rate is

$$\Gamma(\rho \rightarrow \eta \pi) \propto \frac{p^2}{1 + (pR)^2} \left(\frac{p}{m_{\rho}}\right) (2S_{\eta} + 1)R^3,$$

where the first factor accounts for *p*-wave barrier penetration,  $p/m_{\rho}$  is the Lorentz-invariant phase space,  $(2S_{\eta}+1)=3$  is the multiplicity of the  $\eta$  spin, and *R* is some radius of interaction. We can write a similar expression for  $\Gamma(\rho \rightarrow 2\pi)$ . If we assume equal radii  $R = \hbar/2m_{\pi}$  for both processes, then we find<sup>6</sup>

$$\Gamma(\rho \to \eta \pi) / \Gamma(\rho \to 2\pi) \approx \frac{1}{4}.$$
 (3)

To compare the two decay modes, we chose a sample of 2000 events,

$$\pi^+ + p \rightarrow p + \pi^+ + \text{neutrals}, \tag{4}$$

produced in the 72-in. hydrogen bubble chamber<sup>7</sup> by 1.25-Bev/c  $\pi^+$ .

Of these, 1684 fit the hypothesis  $\pi^+ + p + p + \pi^+$ + $\pi^0$ , and 1100 of the 1684 have a two-pion mass  $m_{+0}$  falling in the  $\rho$  peak. We attribute 500 of these to  $\rho$  production,

$$\pi^+ + \rho \to \rho + \rho^+, \tag{5}$$

and subsequent decay according to reaction (1).<sup>8</sup> Corresponding to these  $500 \rho \rightarrow 2\pi$  events, our estimate (3) calls for  $125 \rho \rightarrow \eta\pi$  events. Now the  $\eta$  decays with a branching fraction  $f_{\text{neutral}} \approx \frac{3}{4}$  entirely into neutrals, and with  $f_{\text{charged}} \approx \frac{1}{4}$  into  $\pi^+\pi^-\pi^0$ . Hence  $125 \eta$  should produce  $125 \times \frac{3}{4} \approx 100$  two-prong stars fulfilling the two conditions:

(a)  $m(neutrals) = 550 \pm 7$  Mev,

(b)  $m(+, \text{ neutrals}) = 750 \pm 50 \text{ Mev}.$ 

Instead, if the events are plotted in a two-dimensional m(neutral), m(+, neutral) space, we find a flat distribution containing in the area of interest only five events, all of which appear to be  $p\pi^+2\pi^0$  background and of which at most a few ( $\approx \sqrt{5}$ ) can be attributed to  $\rho \rightarrow \eta + \pi^+$ .<sup>9</sup>

In summary of the experimental situation: 500  $\rho$  yield  $\leq (\sqrt{5}) \eta$  decaying via  $f_{\text{neutral}}$ , and therefore  $\leq \frac{4}{3}\sqrt{5} = 3 \eta$  altogether; i.e.,  $\Gamma(\rho \Rightarrow \eta \pi)/\Gamma(\rho \Rightarrow 2\pi) \leq \frac{3}{500} = 0.6\%$ , with an uncertainty of 0.2%. Since our estimate (3) was 25% instead of 0.6%, we conclude either that our estimate must be too high by a factor  $\simeq 40$ , or that  $\rho \Rightarrow \eta + \pi$  is forbidden by *G* parity and hence that  $\eta$  is  $0^{-+}$ .

In our experience, crude phase-space estimates such as expression (3) are seldom wrong by large factors: In other words, where strong interactions are involved, rates are usually controlled only by phase-space factors and selection rules. However, in this case we must point out that an independent estimate of the strength of the  $\rho \pi \eta_{1-}$  vertex can be made based on the known  $\pi^0$  decay rate  $\Gamma(\pi^0 \rightarrow 2\gamma)$ via the dispersion theory diagram of Fig. 1. (If  $\eta$ is not a vector meson, the 1<sup>--</sup> leg of the diagram



FIG. 1. Decay of  $\pi^0$  via vector mesons.

can be only the  $\omega$ , and Gell-Mann et al. already used this diagram to calculate the strength of the  $\pi\rho\omega$  vertex.<sup>10</sup> If the  $\eta$  is a vector meson, then the  $\pi\rho\eta_{1--}$  vertex will presumably be the dominant factor in  $\pi^0$  decay.) Glashow and Sakurai have used the  $\pi\rho1^-$  vertex as calculated by Gell-Mann et al. for the  $\omega$  meson to calculate a width for the reaction we sought. They found  $\Gamma(\rho \rightarrow \pi\eta_{1--}) \simeq 1$  Mev. Since we know  $\Gamma(\rho \rightarrow 2\pi) \simeq 100$  Mev, their version of our estimate (3) is about 1% instead of our 25%, and we would have expected to see only  $500 \times 1\%$  $\times \frac{3}{4} = 4$  events even for a  $1 - \eta$  meson. Hence, as we warned, if all these considerations involving Fig. 1 are correct, then our experiment may not be sufficiently sensitive to rule out the vector  $\eta$ .

As an alternate explanation for the slow rate of  $\pi^0$  decay, Chew points out that the coupling between a state of odd *G* parity necessarily involves heavy intermediate particles, and that consequently the  $\eta_{1-\gamma}$  matrix element could be substantially less than  $e^{.11}$  Then the  $\pi\rho\eta_{1-}$  coupling could be "normal," and our estimate (3) would still be justified.

We conclude that this experiment suggests that  $\eta$  has even G parity, but theoretical uncertainties are such that, with our data alone, we can claim no proof.<sup>12</sup>

In the "eightfold way" Gell-Mann<sup>13</sup> predicted the four strangeness-zero mesons listed in Table I,<sup>11</sup> and named them  $\pi$ - $\rho$ ,  $\chi$ - $\omega$ . Accordingly, it begins

Table I. Strangeness-zero mesons.

| Spin I | 0 <sup>-</sup> (pseudoscalar) | 1 <sup>-</sup> (vector) |
|--------|-------------------------------|-------------------------|
| 0      | χ(0 <sup>-+</sup> )           | ω <b>(1<sup></sup>)</b> |
| 1      | $\pi(0^{})$                   | $\rho(1^{-+})$          |

to appear as though the  $\eta$  should be rechristened  $\chi$ . Independent of the details of the eightfold way, we note that these four mesons have spins, parities, and *G* parity consistent with the model in which they can dissociate into  $\overline{N}N$  pairs, bound in  ${}^{1}S_{0}$  or  ${}^{3}S_{1}$  states.

We wish to thank Professor G. F. Chew, Professor M. Gell-Mann, Professor S. L. Glashow, and Professor J. J. Sakurai for helpful discussions.

\*Work sponsored by U. S. Atomic Energy Commission. <sup>†</sup>On leave of absence from the Inter-University Institute for Nuclear Sciences, Brussels, Belgium.

<sup>1</sup>A. Pevsner, R. Kraemer, M. Nussbaum, C. Richardson, P. Schlein, R. Strand, T. Toohig, M. Block, A. Engler, R. Gessaroli, and C. Meltzer, Phys. Rev. Letters <u>8</u>, 421 (1961).

<sup>2</sup>D. D. Carmony, A. H. Rosenfeld, and R. T. Van de Walle, Phys. Rev. Letters 8, 117 (1962).

<sup>3</sup>J. J. Sakurai, Phys. Rev. Letters <u>7</u>, 355 (1961). <sup>4</sup>P. L. Bastien, J. P. Berge, O. I. Dahl, M. Ferro-Luzzi, D. H. Miller, J. J. Murray, A. H. Rosenfeld, and M. B. Watson, Phys. Rev. Letters <u>8</u>, 114 (1962). <sup>5</sup>G. Feinberg, Phys. Rev. Letters <u>8</u>, 151 (1962).

<sup>6</sup>G. Feinberg (reference 5) also assumes  $R = \hbar/2m_{\pi}$ , but assumes a specific matrix element and estimates  $\Gamma \eta \pi / \Gamma 2\pi \approx \frac{3}{4}$ .

<sup>t</sup>D. D. Carmony and R. T. Van de Walle, Phys. Rev. Letters <u>8</u>, 73 (1962) and Lawrence Radiation Laboratory Report UCRL-9933, 1962 [Phys. Rev. (to be published)]; D. D. Carmony, thesis, Lawrence Radiation Laboratory Report UCRL-9886, 1961 (unpublished).

<sup>8</sup>That is, we apportion the events in the peak region into 600 background events and 500 due to  $\rho$  production. We then estimate the number of  $\rho$  actually produced might be between 300 and 700. The large uncertainty arises because part of the background can interfere with the  $\rho$  events, changing the population of the peak and its central value.

<sup>9</sup>The weaker  $\eta$ -decay mode into  $\pi^+\pi^-\pi^0$  leads to fourprong stars, which have not been measured; since they give a less sensitive test, it is doubtful that we would find any peak among them.

<sup>10</sup>M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev. Letters <u>8</u>, 261 (1962).

<sup>11</sup>B. R. Desai, Phys. Rev. <u>124</u>, 1248 (1961).

<sup>12</sup>We must also admit our surprise that the three-pion  $\eta$ -decay modes are faster than the  $\pi^+\pi^-\gamma$  and  $\gamma\gamma$  modes (see reference 4).

<sup>13</sup>M. Gell-Mann, California Institute of Technology Scientific Laboratory Report CT-Sl-20, 1961 (unpublished) and Phys. Rev. <u>125</u>, 1067 (1962).