DECAY RATES OF NEUTRAL MESONS^{*}

M. Gell-Mann, D. Sharp,[†] and W. G. Wagner[‡] California Institute of Technology, Pasadena, California (Received February 15, 1962)

The partial width for the observed decay mode $\omega \rightarrow \pi^+ + \pi^- + \pi^0$ can be estimated by assuming, in the sense of dispersion theory, that the process is dominated by $\omega \rightarrow \rho + \pi$ followed by $\rho \rightarrow 2\pi$. We treat ρ as a nearly stable particle and define¹ a coupling parameter $f_{\omega\rho\pi}$. Then the width comes out to be

$$\Gamma(\omega \to 3\pi) = (m_{\omega} - 3m_{\pi})^4 (m_{\rho}^2 - 4m_{\pi}^2)^{-2} m_{\omega} m_{\pi}^2 3^{-3/2} \times (\gamma_{\rho\pi\pi}^2/4\pi) (f_{\rho\omega\pi}^2/4\pi) W(m_{\omega}), \qquad (1)$$

where $\gamma_{\rho\pi\pi^2}/4\pi$ is the coupling constant²⁻⁴ for ρ decay into 2π , in terms of which we have

$$\Gamma(\rho - 2\pi) = \frac{1}{3} (\gamma_{\rho \pi \pi}^{2} / 4\pi) (m_{\rho}^{2} - 4m_{\pi}^{2})^{3/2} m_{\rho}^{-2}.$$
 (2)

The factor $W(m_{\omega})$ is a correction factor for relativistic kinematics and approaches unity as $m_{\omega} + 3m_{\pi}$. For $m_{\omega} = 787$ Mev, we find numerically that W = 3.56.

A virtual photon can turn into ρ^0 ; at such a vertex in a diagram we insert^{3,4} the constant $em_{\rho}^2/2\gamma_{\rho}$. Then the strength of the ρ resonance $m_{\rho}^2(m_{\rho}^2-t)^{-1}$ in the electric form factor of the pion is just $\gamma_{\rho\pi\pi}/\gamma_{\rho}$. If the ρ resonance dominates the form factor, then $\gamma_{\rho\pi\pi}/\gamma_{\rho}$ is of the order of unity. We may now estimate the rate of the decay $\omega \rightarrow \pi^0 + \gamma$ assuming that it is dominated, in the sense of dispersion theory, by $\omega \rightarrow \pi^0 + \rho^0$ followed by $\rho^0 \rightarrow \gamma$. As in reference 3, we obtain

$$\Gamma(\omega - \pi^{0} + \gamma) = \alpha (\gamma \rho^{2} / 4\pi)^{-1} (m \omega^{2} - m \pi^{2})^{3} m \omega^{-3}$$

×(96)⁻¹(
$$f_{\rho\omega\pi}^{2}/4\pi$$
). (3)

If we take a width of 100 Mev for ρ , we have $\gamma_{\rho}\pi\pi^2/4\pi = \frac{1}{2}$; assuming that $\gamma_{\rho}^2/4\pi$ has the same value, we find for the branching ratio

$$\Gamma(\omega \to \pi^0 + \gamma) / \Gamma(\omega \to 3\pi) = 0.17.$$
 (4)

Corrections for $\gamma_{\rho\pi\pi}/\gamma_{\rho} \neq 1$ and for different ρ widths can easily be made.

We may also try to interpret the π^0 decay as dominated by the vertex $\pi^0 \rightarrow \rho^0 + \omega^0$ followed by $\rho^0 \rightarrow \gamma$, $\omega^0 \rightarrow \gamma$. At the $\gamma - \omega$ vertex, we insert the constant $em_{\omega}^{2}/(2\sqrt{3}\gamma_{\omega})$. If we define the vector coupling of ω to nucleons, for example, to have the strength $\sqrt{3}\gamma_{\omega NN}$, then $\gamma_{\omega NN}/\gamma_{\omega}$ gives the strength of the ω resonance $m_{\omega}^{2}(m_{\omega}^{2}-t)^{-1}$ in the electric isoscalar form factor of the nucleon. The factor $\sqrt{3}$ is used so that in the limit of unitary symmetry^{2,4} we have $\gamma_{\omega} \rightarrow \gamma_{\rho}$. The π^{0} decay rate then comes out to be

$$\Gamma(\pi^{0} \rightarrow 2\gamma) = \alpha^{2} (\gamma_{\rho}^{2}/4\pi)^{-1} (\gamma_{\omega}^{2}/4\pi)^{-1} (192)^{-1} \times m_{\pi}^{3} (f_{\alpha\alpha}^{2}/4\pi).$$
(5)

[The ratio $\Gamma(\omega^0 + \pi^0 + \gamma)/\Gamma(\pi^0 + 2\gamma)$ in reference 3 is too small by a factor of 4.] From the measured π^0 decay width of ~3 ev, we can now estimate $f_{\rho\omega\pi}^2/4\pi$ if $\gamma_{\rho}^2/4\pi$ and $\gamma_{\omega}^2/4\pi$ are known. Direct measurement of $\gamma_{\rho}^2/4\pi$ and $\gamma_{\omega}^2/4\pi$ is

Direct measurement of $\gamma_{\rho}^{2}/4\pi$ and $\gamma_{\omega}^{2}/4\pi$ is possible by means of the direct decay of the neutral vector meson into an electron or muon pair. If m_{l} is the lepton mass, then the decay rates are⁵:

$$\Gamma(\omega + l^{+} + l^{-}) = \alpha^{2} (\gamma_{\omega}^{2} / 4\pi)^{-1} (m_{\omega}^{2} / 36) (1 - 4m_{l}^{2} / m_{\omega}^{2})^{1/2}$$

$$\times (1 + 2m_l^2/m_\omega^2), \qquad (6)$$

$$\Gamma(\rho^{0} \rightarrow l^{+} + l^{-}) = \alpha^{2} (\gamma_{\rho}^{2} / 4\pi)^{-1} (m_{\rho} / 12) (1 - 4m_{l}^{2} / m_{\rho}^{2})^{1/2}$$

$$\times (1 + 2m_l^2/m_o^2).$$
 (7)

In the absence of such information, we crudely estimate $\gamma_{\rho\pi\pi}^2 \approx \gamma_{\rho}^2$ as above and take $\gamma_{\omega}^2 \approx \gamma_{\rho}^2$ on the basis of conjectured approximate unitary symmetry. The estimated partial widths for the various modes of ω decay are then given as in Table I, for $\gamma_{\omega}^2/4\pi = \gamma_{\rho}^2/4\pi = \gamma_{\rho\pi\pi}^2/4\pi = \frac{1}{2}$. The dependences on γ_{ρ}^2 , $\gamma_{\rho\pi\pi}^2$, and γ_{ω}^2 indicated in the table are for fixed π^0 lifetime. Other values of these parameters can be inserted at will.

Since the total width of ω is expected to be <1 Mev, exotic decay modes occur with considerable branching fractions. An important one is $\omega - \pi^+ + \pi^-$,

Table 1. Estimated partial widths of ω° decay.		
Mode	Partial width (kev)	Dependence on γ_{ρ}^2 , $\gamma_{\rho\pi\pi}^2$, γ_{ω}^2
$\omega \twoheadrightarrow \pi^+ + \pi^- + \pi^0$	395	$\gamma_{\rho}^{2}\gamma_{\rho\pi\pi}^{2}\gamma_{\omega}^{2}$
$\omega \rightarrow \pi^0 + \gamma$	69	γ_{ω}^{2}
$\omega \rightarrow \pi^+ + \pi^-$	17	Roughly $\gamma_{\rho\pi\pi}^{2} \gamma_{\rho}^{-2} \gamma_{\omega}^{-2}$
$\omega \rightarrow e^+ + e^-$	2.3	$\gamma \omega^{-2}$
$\omega \rightarrow \mu^+ + \mu^-$	2.3	γ_{ω}^{-2}

which is caused by a small electromagnetic mixing of ω and ρ^0 , as noted by Glashow.⁶ If mixing occurs with amplitude y, then we have $\Gamma(\omega \rightarrow \pi^+ + \pi^-)$ = $y^2 \times 100$ Mev, and $y^2 \sim 1/5000$ is sufficient to give a branching fraction of several percent. A very crude calculation of the mixing by means of $\omega \rightarrow \gamma \rightarrow \rho^0$ gives the entry in Table I, in agreement with reference 5.

The recently discovered neutral meson^{7,8} at about 550 Mev may be pseudoscalar with G = +1; if so, we call it χ as in references 2 and 4. The forbidden decay rates into $3\pi^{0}$ and $\pi^{+} + \pi^{-} + \pi^{0}$ are difficult to estimate, except that $3\pi^0/(\pi^+ + \pi^- + \pi^0)$ $\leq \frac{3}{2}$. The remaining neutral decays are expected, however, to represent $\chi + 2\gamma$. The decay $\chi + 2\gamma$ may be described roughly on the assumption that the important intermediate steps are $\chi \rightarrow 2\rho^0$ (followed by $\rho^0 \rightarrow \gamma$, $\rho^0 \rightarrow \gamma$) and $\chi \rightarrow 2\omega$ (followed by $\omega \rightarrow \gamma$, $\omega \rightarrow \gamma$). We now wish to estimate the ratio of this rate to that of the hitherto unobserved charged decay mode $\chi \rightarrow \pi^+ + \pi^- + \gamma$, which should be dominated by $\chi \rightarrow 2\rho^0$, followed by $\rho^0 \rightarrow \gamma$, $\rho^0 \rightarrow \pi^+$ + π^- . First we ignore the dissociation of $\chi - 2\omega$. The ratio is then easy to compute numerically and comes out

$$\Gamma(\chi \to \pi^{+} + \pi^{-} + \gamma) / \Gamma(\chi \to 2\gamma) \approx \frac{1}{2} (\gamma_{\rho} \pi \pi^{2} / 4\pi) (\gamma_{\rho}^{2} / 4\pi).$$
(8)

If we make use of unitary symmetry, we can estimate the correction factor to be applied to (8) for the inclusion of $\chi^0 + 2\omega - 2\gamma$, namely $\frac{9}{4}$. We see that the mode $\pi^+ + \pi^- + \gamma$, although one

order lower in α than the 2γ mode, is expected to be rarer. The actual estimate is not in violent disagreement with experiment.8

Some other discussions of the ω decay have recently appeared.⁹ The distinctive feature of our treatment and that of reference 5 is that we express our estimates in terms of measured or measurable matrix elements involving low-mass intermediate states that we guess to be dominant.

⁵Y. Nambu and J. J. Sakurai, Phys. Rev. Letters <u>8</u>, 79 (1962). ⁶S. Glashow, Phys. Rev. Letters <u>7</u>, 469 (1961).

⁷A. Pevsner, R. Kraemer, M. Nussbaum, C. Richardson, P. Schlein, R. Strand, T. Toohig, M. Block,

A. Engler, R. Gessaroli, and C. Meltzer, Phys. Rev. Letters 7, 421 (1961).

⁸P. Bastien, J. Berge, O. Dahl, M. Ferro-Luzzi, D. Miller, J. Murray, A. Rosenfeld, and M. Watson, Phys. Rev. Letters 8, 114 (1962).

⁹For example, G. Feinberg, Phys. Rev. Letters 8, 151 (1962).

^{*}Research supported by the U. S. Atomic Energy Commission and the Alfred P. Sloan Foundation.

[†]National Science Foundation Predoctoral Fellow. [‡]Howard Hughes Doctoral Fellow.

 $^{{}^{1}}f_{\omega\rho\pi}$ in a diagram multiples the quantity

 $e_{\kappa\lambda\mu\nu}k_{\kappa}^{\ \omega}e_{\lambda}^{\ \omega}k_{\mu}^{\ \rho}e_{\nu}^{\ \rho}.$

²M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20, 1961 (unpublished).

³M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961).

⁴M. Gell-Mann, Phys. Rev. 125, 1067 (1962).