VoLuME 8, NUMBER 5

PHYSICAL REVIEW LETTERS

MARCH 1, 1962

MAGNETOHYDRODYNAMIC EQUATIONS FOR FINITE LARMOR RADIUS

K. V. Roberts and J. B. Taylor*

Culham Laboratory, Abingdon, Berkshire, England
(Received January 29, 1962)

In a recent paper Rosenbluth, Krall, and Ros-
toker! discussed the influence of finite Larmor
radius on the gravitational instability of a mag-
netized plasma, finding a stabilizing effect. These
authors used the Vlasov equation, but subsequent-
ly Lehnert,? using the two-fluid magnetohydrody-
namic equations, has cast doubt on their result.
Lehnert’s work appears to show that the stabiliz-
ing effect found by Rosenbluth et al." is exactly
cancelled by another term from the two-fluid
equations, leaving only a residual stabilizing ef-
fect which he reported previously.?

It will be shown in this Letter that the null re-
sult found by Lehnert? is a consequence of the
fact that he has used only the scalar pressure
in the ion equation of motion. We shall find that
other terms which are known to exist*’® in the ion
pressure tensor are actually responsible for the
additional effect found by Rosenbluth et al.* In
fact, the full result obtained by these authors can
be derived from the magnetohydrodynamic equa-
tions by including known modifications to both the
ion pressure tensor and also Ohm’s law.® The ef-
fect found by Lehnert corresponds to modifying
Ohm’s law only.

The ion pressure tensor must be modified by
including certain transport terms. These repre-
sent a type of viscosity, independent of any colli-
sions, in which the Larmor radius takes the place
of the usual mean free path. The appropriate
terms were first deduced from Boltzmann’s equa-
tion by Chapman and Cowling,* and Marshall® has
supplied a detailed derivation. Because these au-
thors include collisions as well as finite Larmor
radius, their calculation of the pressure tensor
is very complicated. A simpler method for ob-
taining the required terms in the collision-free
approximation has recently been published by
Thompson.” The relevant parts of the ion pres-
sure tensor are

pxx =p -pv(aVy/ax +an/ay),
pyy =p +pu(6Vy/8x +avx/ay),

by =Pys =pv(avx/ax -aVy /3y). (1)

Here we have assumed that the magnetic field B
is in the z direction and essentially uniform,

while the plasma velocity is in the xy plane. p is
the ion perpendicular pressure and p is the den-
sity. The parameter v has the dimensions (but
not the exact physical significance) of a kinematic
viscosity, and is defined by v =a®Q /4, where a is
the ion Larmor radius and & is the ion gyrofre-
quency. The transport terms in the electron pres-
sure tensor can be neglected.

As an illustration of the effect of this modifica-
tion of the pressure tensor we shall derive the
dispersion relation contained in Eq. (2.13) of ref-
erence 1. For this purpose it is convenient to use
the equivalent one-fluid equations. Suppose that
there is a uniform gravitational field g in the x
direction, and a uniform density gradient 8p,/dx
=-np,. If p now denotes the total perpendicular
pressure, the plasma equation of motion is

oDV »( B -+ =
= - v _
D p+8n +pg + VX, (2)

where
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The continuity equation is
3p/at+ V- (pV) =0. (4)
If we retain the simple relation

E+VxB=0, (5)

then by taking the curl of (5) and using the low-8
approximations

VXE = 0, v x (V xﬁ) = -_1’3(‘{7-?7)

we find

V.V =0. (6)
Equations (2), (4), and (6) can now be solved by
taking the curl of (2), linearizing, and looking
for solutions of the form exp(iwt +iky), since the
x dependence is treated as weak in reference 1.
This leads to the dispersion relation

w?+2vnkw +gn =0, (7)
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which represents the difference between the re-
sult of Rosenbluth et al.! and that of Lehnert.?

To obtain the full result we use the generalized
Ohm’s law®:

E+VxB+ (c/en)—epe -(c/en)jxB =0, (8)

where n is the number density, p, is the electron
pressure, and j’is the current density. Electron
inertia and finite resistivity have been neglected
in (8). The last two terms of (8) can be trans-
formed with the equation of motion to give
E+VxB-S9p MDY M, Y520, (9)
en “i n
where p; is the scalar ion pressure and M is the
ion mass. Taking the curl of (9) as before, we
find that (6) is replaced by

e = 1= [DV\ v= (1
B( .V)+§v><(57v>-§v>< _x)-o, (10)

where D is a unit vector in the direction of the
magnetic field. [The third term of (9) does not
contribute to (10) if we assume with Lehnert?® that
temperature variations can be neglected.] Solving
(2), (4), and (10) as before by taking the curl of
(2) and linearizing, we find the dispersion rela-
tion. This must now be cubic in w, but takes the
form F,(w) +6=0, where F (w) is a quadratic ex-
pression and 6 is a small additional contribution
whose effect we can show to be negligible.® In
fact 6 displaces each root w, of the relation F,(w)
=0 by an amount pw,, where p contains factors
(ak)?, (an)?, and w/Q which are treated as small
in reference 1. The final result is therefore

Fo(w)=w?+(2unk+gk/Q)w +gn=0. (11)

Equation (11) gives exactly the same stability
condition as (2.14) of Rosenbluth et al.,* when ac-
count is taken of the difference between their ¢,’
and our 7, namely

€,'=1+2g/(a*®) =n+g/(2vQ). (12)

There is an apparent difference of sign between
the coefficient of w in Eq. (11) and that in Eq.
(2.13) of reference 1. This difference arises be-
cause Rosenbluth ggg.l use a coordinate system
in which the unperturbed electric field is zero,
while we assume that the bulk velocity of the
plasma is zero. The relative velocity Vp of the
two systems is determined by the equilibrium
equation for the ions, i.e., by

n(e/C)Ex -sz./ax +pg=0, (13)
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from which

VD=E/B=21/T; +g/%. (14)

When the corresponding Doppler shift in w is al-
lowed for, the two dispersion relations become
identical. Lehnert’s result® is obtained by setting
v=0in (11).

We have therefore shown that the finite Larmor
radius stabilization demonstrated by Rosenbluth
et a_l.1 can be obtained from the magnetohydrody-
namic equations, by making prescribed modifica-
tions to the ion pressure tensor* and to Ohm’s
law.® It is not essential to use Vlasov’s equation
for this type of problem, and the more elementary
derivation given here may help to make the phys-
ics clearer.

The only significant contribution from the X
term in (10) is a term gn(a®#%/4) in 6, which can
be ignored because it is equivalent to a negligible
change in g. Therefore (10) can be written more
simply as

B(V-V) +(1/2)v x (DV/Dt) =0. (15)

If temperature variations had been allowed for in
(9), their effect would have been equally small.

In general, cross terms between the two effects
introduced by modifying Ohm’s law and the ion
pressure tensor can be neglected because these
modifications cannot simultaneously be important,
since

(2vnk)(gk/Q) = gnla®k?/2). (16)
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