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An example of the effect under consideration is the
ease of the K ~ +no decay, which is prohibited by
the AT=+~ selection rule but which, nevertheless, com-
petes with the allowed K 3~ decays as a consequence
of the greater phase space available to the former.
However, in this ease the phase-space factor has only
to overcome an inhibition of -20-25 in the 2&-decay
matrix element. Furthermore, the larger mass of the
(' (780 Nev compared to 495 Mev for the K ) favors the
allowed 3»-decay mode in the competition.

'~See, for example, E. Fermi, Elementary Particles
(Yale University Press, New Haven, Connecticut, 1951).
However, it is necessary to use the exact, relativistic
expression for dp3, and to evaluate the necessary in-
tegrals by numerical methods. I am indebted to Robert
Zier for the numerical work involved in this computa-
tion.

' A similar argument predicts the decay ( —» +y

with about the same branching as the 2& decay. This
decay is being looked for by the Johns Hopkins —North-
western group. 3 However, its detection is obviously
much more difficult than the decay ( &++ 7t here
under consideration.

'3The main difficulty in establishing the experimental
value of this ratio arises from problems of normaliza-
tion between samples containing numbers of pions dif-
fering by one in the reactions p+p —n~+ fd.

~4The» —2y lifetime is -10 '~ sec [see R. G. Glasser,
N. Seeman, and B. Stiller, Proceedings of the 1960
Annual International Conference on High-Energy Physics
at Rochester (Interscience Publishers, Inc. , New York,
1960), p. 30); an q with J= 0 would be expected to ex-
hibit a comparable lifetime for 2y decay.
' J. J. Sakurai, Phys. Rev. Letters 7, 355 (1961).
ieA. Abashian, N. Booth, and K. Crowe, Phys. Rev.

Letters 5, 258 (1960).
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The recent discussions on the possibility of
testing the validity of quantum electrodynamics
at short distances have generated new interest
concerning the behavior of radiative corrections
to electrodynamical cross sections at high ener-
gies.

In particular it is very well known that the con-
tribution of real photons to radiative corrections
is such as to diminish their absolute value. More
precisely, Eriksson and Peterman' have shown
that for high-energy processes with large mo-
mentum transfer (q»m'), taking into account
the emission of real, soft (in the center-of-mass
system) photons lowers the expected a in'(q'/m2)
dependence of the radiative corrections to an
a in(q'/m') dependence.

In computing the contribution of real photons to
the radiative corrections of a differential cross
section, one is faced with the problem of intro-
ducing in the formula the resolving power of the
experimental device, which amounts to taking
into account the particular geometry and efficien-
cy of the detecting apparatus, ' which may in turn
hinder the clarity of the theoretical discussion.
This difficulty can be avoided for electrodynami-
cal processes such as Compton scattering and
pair annihilation for which a total cross section
can be def ined. '

We have computed radiative corrections to the
total cross section for the annihilation of the
e+e pair, taking into account terms up to e'.

As is known, the differential cross section for
this process corrected for virtual photon con-
tributions can be put in the form4:

n A
do = do 1+—E (y) ln —+f (vr)

v 0 m 1 m 2

where dp., is the Born cross section, m K=2Pg '~y
=2p2. k2, m v=2p, 02=2Pg ~y A is the usual ficti-
tious mass of the photon introduced to regularize
the infrared divergence [f, is independent of A
for A smail], and y =E+/m. The right side of
(1) can be integrated to give the correction due
to virtual photons to the total cross section:

0 A
v =v 1+ —E (y) 1n—+I" (y)

v 0 &
I

1 m 2

[(2) is invariant because of the invariant infrared
regularization. ]

In order to get the contribution of real photons
to the total cross section, we have inserted the
fictitious mass A in the differential cross sec-
tion for annihilation into three photons and then
integrated to obtain the total cross section. The
details of this calculation will be published sep-
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Table I. Radiative correction up to e to the total cross section for e e annihilation into photons. yL =E+jm
in the l.aboratory system; p is the same in the center-of-mass system. &T represents the total correction;

~ ~

4~ and 63 are connected with the virtual and real photon contribution, respectively (for the precise meaning see the

text) .
6 from Eq. (5} 4 exact c.m.

2 x10
2 x10
2 x104

106
108

0.0164
0.0291
0.0458
0.0833
0.1424

0.0136
0.0286
0.0457
0.0832
0.1424

-0.0399
-0.0933
-0.167
-0.340
-0.619

0.0564
0.122
0.213
0.423
0.761

10
31.6
10

7 07 x10
7.07 x10

arately. The result can be put in the form:

o, =o —E,(y) ln —+p, (y)

Adding this to (2), one obtains the total cross
section with corrections both from virtual and

real photons:

=v 1+—[Z (y)+E (y)] =o (1+5 ).

(4)

The terms containing A cancel as they should.
I', comes from the virtual-photon corrections and

I, from the three-photon annihilations, although
separately they have no simple physical meaning
(since divergent terms have been subtracted, the
separation into I, and I, may depend on the par-
ticular regularization method adopted).

The exact expression for 5T is rather compli-
cated and will be given in another paper, but
from it the following expression can be obtained
that is valid for y» 1, p = 1 (in the lab system):

2 y3 11 5&
6T =

g~ i

ln ( y) —,ln(2y) + 2 — ~ +
2 [1

(5)

In Table I we give 5T for some values of y and
also, for comparison, the values obtained by nu-
merica. l computation from the exa,ct formula.
[The terms left out are of the type nn in~(2y)/y
with n of the order of unity; in fact, with n= 1.4,
Eq. (5) is valid within 2 Q down to y = 200.]

The interesting feature of (5') is that, contrary
to what one could have expected from previous
work, ' the leading term is still of the ln'(2y)
type.

In order to understand this result we have sep-
arated the contribution of soft and hard real pho-
tons in the center-of-mass system. The total
cross section for annihilation into three photons,
each with energy )b. (valid for b, «m in the c.m.
system), is

co. c c
(y) ln - p, (y) ++, '(y)

+21ny(1+P) ln +lny(1+P) ln
y(1+P) y(1 +P

2Py 4y2

2
+ —lny(1+P), (6')

where Z(x) is the Spence function defined as

&(x) = — — dt. -lnI1 -t I

t

For high y,

p, (y) = -2 ln (2y) + 2 ln(2y) - m'/3,

and Eq. (6) becomes

(6 i I)

(6)

The functions with index c are the transformed
expressions of formula (4) in the center-of-mass
system, while y also refers to this system, and

v, (y) = 2y -1 2y
y'P y (1+P)

+ iZ[y'(1-P)']

o, ( b) = 0 24(21n2y -1) ln—-241n(2y) +12+ =@06~ ——vo(21n2y -1) in—.&go m'y 36 - 8m' 2n 2g
12m 21n(2y) -1 m m

Similarly, one can give the correction due to virtual photons plus that due to real photons with
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energy (in the c.m. system) &b «m:

Q' C Pl c
cr (&6) =o 1+— F-(y) ln—+y (y)+F (y)

v 0 m 1 2b 3 2
(8)

which for high y becomes

Q my 2 3w —25
a (&6) =v 1+ -24(2ln2y -1) ln +8ln'(2y)+22 1n(2y)+4m'-25+

v 0 12' 2ln 2y) - I

2Q 2h
+—v (2 ln2y - 1) ln—.

o v m 0 n1
(9)

It is interesting to observe that formulas (6) and

(8) or (7) and (9), although not Lorentz invariant,
now have a precise physical meaning. The intro-
duction of a minimum energy of the photons (in
the c.m. system) which can be regarded as a
sort of regularization of the infrared divergence,
allows a separation of the contributions of virtual
+real, soft photons (energy & b, ) from real, hard
ones (energy&h). It is also seen that these con-
tributions contain large terms which compensate
each other exactly. This is exemplified in Table
I, where in columns IV and V the values of 5, and
6„have been tabulated from (7) and (9).

If we consider b, jmy to be the relative resolving
power and to be independent of y, we have from
(I) that the contribution of hard photons (in the
c.m. system) does not give In~(2y) terms, which
instead are contained in (9), namely, in the sum

of virtual photons and real, soft photons. This
point can be analyzed further if we proceed to
the differential cross section corrected for virtual
and real, soft photons in the c.m. system. To this
end let us consider the (regularized) cross sec-
tion for annihilation into two hard photons plus
one soft with energy «h«m in the c.m. system. '

c 2b
d&x =doo F(y—) ln —+q& (y) .

3soft o z 1 A. 3

It is to be pointed out that the term in square
brackets is independent of the angle; this means
that the emission of soft photons is isotropic as
it should be. If we add to (10) Eq. (1) expressed
in the c.m. system, we obtain the desired differ-
ential cross section. Its relativistic limit can be
easily calculated for the following limiting cases:

z= T =2y2»]. ,

Q 7r'
do = da 1+—2(2 ln2y —1) In + 3 ln2y(1+ ln4) ——- 6.97 -

&
In'2

c 0 my 6

z= 4y»7. = j. ,

do =der 1+—2(2 ln2y -1) In +2 In~(2y) -4 ——
0 my 2

(12)

which correspond to 90' and 0 annihilation in the
c.m. system, respectively. It is seen that while
for the first case the ln'(2y) terms are absent,
in the second case they are present. This can be
understood if it is recall. ed that while the correc-
tions coming from virtual photons are negative
and large (ln' terms) at 90' and small (no In'
terms) in the forward direction, the soft, real
photon contribution is positive and large (In'
terms) and isotropic [see (10) with (6")]. In par-
ticular, the latter compensates the ln' terms of
the virtual photon contribution at large angles

(high momentum transfer), ' but these terms are
still present in the forward direction, since in
this situation the virtual photon contribution is
small (no ln' terms).

It is clear that, upon integrating the differential
cross section to obtain again the total one, we will
still get the ln'(2y) terms

In conclusion we can say that the corrected
total cross section for positron-electron annihila-
tion contains ln'(2y) terms. The above discussions
enable us to ascribe their origin to the contribu-
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tion of real, soft photons for small momentum

transfer in the center-of-mass system.

~K. E. Eriksson and A. Peterman, Phys. Rev. Let-
ters 5, 444 (1960}. K. E. Eriksson, Nuovo cimento 19,
1044 (1961).

Yung Su Tsai, Phys. Rev. 120, 269 (1960).
These processes offer also the advantage that since

the skeleton graphs contain only internal electron lines,
the contribution of other charged fields, e.g. , to vacuum
polarization can enter only in graphs of at least the sixth

order in e' (the standard radiative corrections we are
calculating take into account graphs up to the fourth or-
der). This means that what one could call the natural
breakdown

' of quantum electrodynamics (i.e. , the devi-
ation due to other existing fields) is particularly negligi-
ble for these processes. Really neutral fields decaying
into photons can give some contributions at higher order
which could become appreciable for high c.m. energies
[e.g. , through the process e+ -e - 7(0+ y; see G. Furlan,
Nuovo cimento 19, 840 (1961)].

4I. Harris and L. M. Brown, Phys. Rev. 105, 1656
(1957).

TOTAL CROSS SECTIONS AT HIGH ENERGIES

(1)

(2)

(3)o( p, p) )o(p, p). o(, p) - ~(",p) = -:Z, [o y = i) -. ' (r = -,)]
g

Pomeranchuk and other authors have proved
that the total cross section for a particle on a
target must be identical with that for its antipar-
ticle on the same target at sufficiently high energy
under some conditions.

It is our purpose to explain inequalities (1) to (3)
and to predict other relations among total cross
sections at high energies under a hypothesis on
generalized isospin independence. The three in-
equalities will be explained on the basis of the fol-
lowing facts: (a) the isospin of the A particle is
zero; (P) all hyperons have strangeness of the same
sign; (y) the strangeness of all hyperons is nega-
tive; and (6) the pion and K meson have baryon
number zero. Inequality (1) is explained by (tx),
inequality (2) by (a) and (y), and inequality (3) by
(o.), (P), and (6). If hyperons had positive strange-
ness, then the direction of inequality (2) would
have been reversed. If the hyperons did not all
have the same sign, then there would be no basis
for inequality (3).

Let us start with the total cross sections for the
(w, p) and (w+, p) and take only charge-independent
strong interactions into account. The (w, p) has
two isospin states (T = -', and T = )) whereas (w+, p)

+ —,P (r (T = -',),
(i)

where Pc stands for the summation over all the
channels common to both (w, p) and (w+, p) and

Qn for the summation over all the possible chan-
nels that are included only in the (w, p). The
channels that belong to P„are exhausted by

A+K'+m(A+ A),

n+A+A+m(A+A), (m =0, 1, 2, ~ ~ ~ )

:-'+A+ A+m(A+ A).

%e now make the dynamical assumption that

K,o (~ = '.) =Z,o (T = -.')(&) (&)
(6)

z z

at high energies. The difference in the total cross
sections comes from noncommon channels. Then
the relations

v(w , p) = g(w', p) = g(w+, n) = g(wo, n) & o(w+, p) = g(w , n)

K. Hiida, t M. Soga, l and K. Tanaka
Argonne National Laboratory, Argonne, Illinois

(Received January 8, 1962)

Total cross sections which are well known ex- has only one isospin state (T = &). Final states
perimentally' ' are nearly constant and seem to with the same kinds and same number of particles,
satisfy the following inequalities from several irrespective of their z components of isospin, T„
Bev to the highest energy available at the present will be designated as being in the same channel.
moment () 20 Bev): The (w, p) includes all the channels that belong

to the (w, p), but there are channels with pure
T = -', that belong to the (w, p) alone.

o(&, p) )o(&', p), Therefore from charge independence one obtains
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