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The theoretical analysis of the optical har-
monics in quartz as reported by Franken and
collaborators' was based on a phenomenological
approach. In order to optimize the experimental
performance of various crystals we have de-
veloped a semiclassical theory which takes into
account not only the symmetry of the crystal but
a simple representation of its band properties
as well. In the absence of a center of symmetry
as in a piezoelectric crystal the nonlinear mo-
tion of the bound electron, which is responsible
for the radiation, can be represented by the fol-
lowing simple equation:

2 2 1'~t
1+(u, x+nx =(eE/m)e'

where &, is the oscillator frequency, ex' is the
asymmetrical nonlinear force term and Ee~~~ is
the large driving electric field of the optical

maser. If the displacement x is represented in
a Fourier expansion, the first order term x,
represents the dispersion and the second order
term,

(ye2E~
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is the harmonic component of the displacement.
In our theory we assume that each electron in
the crystal behaves as a classical radiator in
which the radiated power P = (2e~/3cs)g')', and
that the oscillator frequencies are distributed
over the bands. Only the allowed direct tran-
sitions give large dispersion and therefore ac-
count principally for the phenomenon observed.
Then since xm-x, '-f ~ -M4/&u, 2, where f is the
oscillator strength and M is the momentum ma-
trix element for the allowed transition, we can
write the power as proportional to the following
integral:

2e'
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where ruo= u&+P'/2pR and 1/p = 1/m„+1/m&
for simple parabolic bands; ~g is the frequency
corresponding to the energy gap, P is the mo-
mentum, and ng„and pn~ are the effective masses
of the electron in the valence and conduction
bands, respectively. For harmonic doubling it
is necessary that ~ «u&/2. Hence &u,'» &um which
allows an approximate evaluation of the integral
of Eq. (3) to give the following result, if we take
pm~ large in Eq. (3):

(2/3-~/~ ) (2/3+~ j~
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where

C 2
= 48 1ra'e'E'M'Q'K&dgh'C'm 4((d ') (/lh)'a

and a is the lattice constant. %e have plotted
this function in Fig. 1, and it is apparent from
the results and Eq. (4) that although the oscilla-
tors are distributed over the band the singularity
for ~/&u =1/2 is still retained but is not as strong
as that or a single oscillator.

To test this theory qualitatively we have ex-
amined a number of piezoelectric and ferroelec-
tric materials and observed the magnitude of
the second harmonic output as stimulated by a
ruby laser focused under analogous geometric
conditions so that the geometrical factor~ of the
crystalline array was essentially the same for
all these samples. For comparison the relative
intensity of three of these, SiO» AI,O3$ and ZnS,
are plotted in Fig. 1 as a function of the param-
eter ~ j~&. In this figure we have taken the out-
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tempt has been made to compare the results with
theory. Quantitative measurements of surface
effects should provide information about the
binding of electrons in this region and the onset
of breakdown phenomena should determine ef-
fective energy gaps for surface layers as optical
masers of different wavelengths become available.

In a manner analogous to the above treatment
for the second harmonic we carried out calcula-
tions for the third harmonic which would be ob-
servable in cubic crystals with a high-energy
gap such as diamond and the alkali halides by
replacing the asymmetrical nonlinear force term
in Eq. (1) by Px~. The integral to be evaluated is
now

~max (~0$2( R 2)8( 2 9 2)2 '

Assuming that u & w&/3 the final result is

FIG. 1. Comparison of experimentally measured
second harmonic generation from quartz, Al&03, and
ZnS with theory. The theoretical curve is adjusted
to pass through the quartz experimental point.
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put of quartz on the theoretical curve. As ex-
pected from the theory, ZnS, which has an ener-
gy gap just above the second harmonic, turned
out to be the most efficient frequency doubler.
Its output, however, falls below the theoretical
curve. This is not surprising since the non-
linear coefficieht n probably differs for these
three crystals and if the piezoelectric effect is
a measure of this coefficient, the o, of ZnS
should be smaller. Furthermore the matrix
elements for the interband transition, the mass
values, and the mean oscillator frequencies may
also be somewhat different for these materials.

Our analysis in principle also applies to the
surface layers of a cubic crystal or that of iso-
tropic materials, in that for the first few atomic
layers the crystalline potential in the direction
perpendicular to the surface is no longer sym-
metrical and therefore should exhibit nonlinear
second harmonic generation. In this case the
concept of the band structure is probably not
applicable and a model intermediate between the
single-electron model and that for the bulk has
to be developed. Nevertheless experimental ob-
servations of the surface phenomenon on diamond
and glass have been observed. ' However, no at-

where
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It is evident that the most efficient harmonic
tripling will be obtained with a material in which
the direct energy gap is just a little larger than
three times the output frequency of the laser.
Thus for the ruby laser, diamond and the alkali
halides of the iodide series would be most prom-
ising.

%e have also evaluated the mixing of frequen-
cies, using an equation for the asymmetrical
oscillator similar to Eq. (1), in terms of the
present model with similar approximations. Con-
sidering two incident waves of frequencies +,
and ~, we obtain a result identical to Eq. (4) ex-
cept that now &u is replaced by (cu, + &u~)/2. It is
apparent that both the sum and difference fre-
quencies are generated and that the condition
for proper operation is that (&u&+ &u2) & ~&, con-
sequently only the sum presents a realistic con-
dition for large amplitude mixing. The power
of the difference frequency would be several
orders of magnitude below the sum output since
on a curve as in Fig. 1 it would occur at low
values of the abscissa. The above result suggests
that if one of the amplitudes can be made extreme-
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ly large, the second need only be of modest value
to provide detectable output at the sum frequency.
Under proper conditions, one of these sources
may be a monochromator in the infrared and the
other a ruby laser which would permit genera-
tion of visible green light, for example. If the
theory is considered for a cubic crystal or an
isotropic material in which a large dc or micro-
wave field E, of the order of 10' volts/cm, just
below breakdown, is introduced, then the results
analogous to Eq. (4) suggest the possibility of
inducing frequency doubling. The result is given
by Eq. (4) except that in C„a is replaced by
3PeE,/mcu02, where the generation is achieved
by making E, large. Preliminary experiments
have shown this effect to occur. 4

Nonlinear effects in electron plasmas as in a
metal can be excited by an optical maser. This
was demonstrated experimentally at the edge of
a razor blade' which emitted second harmonics.
In this case the equation of motion can be written
in the following form'.

dv eE
vu dt (7)

where
j~t 2j~tv= v +v2e

2 2 2 jN&

p p0 p1

/(1+fx ),eff

~ '=(ne'/~e)[L/(1+LX )];
p 0

X, is the dielectric susceptibility, n =n, +n,ei~
is the electron density, and I. is the depolarizing
factor. From div e,E = n, e w'e can estimate that
n, =10"/cm~ for E= 105 v/cm at x =0.7 p.. Then

if we solve the nonlinear Eq. (7) in the appropriate.
manner for the second harmonic we obtain for
the power radiated per electron:

e4 4g R~ 4

8 eff Pl
s 2( 2 2)R(4 2 2)2 '

pO pO

From Eq. (8) we see that the power radiated
can be tremendously enhanced if the metal is
selected such that the plasma frequency and
maser frequency are related by co=(upO or
w = &up0/2. The effect should be much greater
than that in an insulator under these conditions.
Furthermore we see that harmonic doubling is
possible in an isotropic plasma if polarization
effects are induced, i.e. , I g0. Thus we found
that on a clean razor edge there are no harmonics
generated when E is parallel to the surface, but
only when E is perpendicular to the surface. How-
ever, when a large magnetic field is placed paral-
lel to the surface of the metal and E transverse
to it but still parallel to the surface, the theory
shows that nonlinear effects are again induced.
Third harmonic generation and mixing by plasmas
can be analyzed in a similar manner.
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