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A general discrete stochastic process involving random amplification with additive external noise is
analyzed theoretically and numerically. Necessary and sufficient conditions to realize steady power
law fluctuations with divergent variance are clarified. The power law exponent is determined by a
statistical property of amplification independent of the external noise. By introducing a nonlinear effect
a stretched exponential decay appears in the power law. [S0031-9007(97)03737-X]
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Power law distributions have been found in diversemaster equation cannot be reduced to a solvable Fokker-
fields of science and the subjects of physicists’ research aflank equation due to large fluctuations except in very
growing wider. Quantitative analyses are now in progresspecial cases [9]. By this approach a sophisticated ap-
on a variety of topics showing power law distributions, proximate theory has clarified that the Langevin equation
for example, fish school sizes [1], frequency of jams inwith a random coefficient follows a steady distribution
Internet traffic [2], and even stock market price changesvhose tails decay either following a stretched exponential
[3]. Inview of statistical physics the most important task isform or a power law [10].
to elucidate general physical mechanisms underlying these There is a powerful theoretical method for distributions
power law behaviors. with large fluctuations, the characteristic functions. The

A recently proposed concept of self-organized critical-characteristic function is a Fourier transform of the proba-
ity is based on the idea that open systems showing powddility density and the power law tails for an infinite vari-
law distributions may have a mechanism of controlling in-ance distribution can be represented by a singularity at the
herent parameters automatically to be at the critical poindrigin of the corresponding characteristic function. The
of second order phase transition [4]. This idea has beemathematical theory of stable distributions, which have
confirmed theoretically for a sandpile model of avalanchepower tails, is based on the characteristic functions [11],
that the critical point is stable in the renormalized macro-and some physical systems showing power law distribu-
scopic limit [5], and its applications are increasing rapidly.tions have been solved rigorously by using characteristic

Another general mechanism of producing power lawdunction techniques [12].
has been found in the study of stochastic processes involv- In this paper we focus on temporal fluctuations having
ing multiplicative noises [6]. A typical equation of mul- infinite variances. We introduce a discrete time version of
tiplicative process is given by a linear Langevin equatiorthe Langevin equation with a random coefficient and solve
with a randomly changing coefficient. The effect of suchthe steady state solution by introducing the characteristic
a random coefficient has been intensively analyzed relatunction. We show rigorously that the tails of steady state
ing to the study of nonlinear dynamical systems becausprobability density follow a power law in a very wide range
statistical properties of some nonlinear systems can bef parameters. The necessary and sufficient conditions to
approximated by such stochastic equations [7,8]. It is intealize the power laws with divergent variance is clarified:;
tuitively obvious that multiplicative noises drastically en- also the uniqueness and stability of the power law solution
hance the additive random force in the Langevin equatiofis proved theoretically. The exponent of the power law
and we have much larger fluctuations than in the case a§ not universal but changes continuously depending on
constant coefficient. Numerical study and theoretical apthe statistics of the coefficient. An exact formula is found
proaches strongly indicate the existence of a statisticalljor the exponent which clearly shows that the exponent
steady state in which temporal fluctuations follow a powelis independent of the statistics of additive random force
law distribution for a wide range of parameters in the ran-although the random force is necessary to realize the
dom coefficient. steady state. We confirm these results also by numerical

Theoretical analysis of the Langevin equation with asimulations. Inthe final part of the paper we discuss briefly
random coefficient is generally very difficult, because thea possible direct application to the distribution of stock
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market price changes and rapid decays of distribution tail&q. (5) derives a set of equations for moments including

due to a nonlinear effect. Eq. (2) for the lowest order. When the variance diverges
The model equation is given by the following simple Z(p, t) have singularity afp = 0 in the limit of t — «
discrete version of the linear Langevin equation: and Taylor expansion cannot be applied for the steady
solution. In such a case the following fractional power
(e +1) = b(0)x(0) + £, () term can be assumed for the lowest order term because

wheref () represents a random additive noise as usual, anidhe characteristic function is generally a continuous func-

b(¢) is a non-negative stochastic coefficient which meangion [11],

dissipation forb(r) < 1. and_ magnification for{a(r) > Z(p,®) = 1 — constX [pl? + ..., 0<B <2,

1. The case of magnification never occurs in a stable ©6)

thermal equilibrium because it corresponds to “negative

viscosity” in the continuum Langevin equation. However,which is equivalent to the assumption of power law tails

magnification of fluctuations occurs in unstable systemén the probability distribution:

in ggneral;_therefore, we believe Eqg. (1) is a very br_glsic P(=|x]) o« x B, 7)

starting point for general phenomena. In the following

discussion, for simplicity, we assume that) and f(r)  Where P(=|x|) represents the cumulative distribution

are independent white noises having stationary statisticgefined as

andf(r) is symmetric. x|
Phi) = |

oo

p(x")dx’ +f p(x")dx'. (8)

[x|

Taking the average over the square of Eq. (1) we have
the following equation for the second order moment:

o]

2 2\ /a2 2 Introducing the steady solution’s functional form,
O+ D) = BTN + (), ) Eq. (6), into Eq. (5), we have the following consistency
where(- - -) denotes an average over realizations. condition for the lowest order op in the case that the
As (b?) and ( f?) are constants we can readily solve additive noise’s variance is finite arli(p) is expanded
Eq. (2). For(h?) < 1 there is a stationary solution, in integer powers op.
o _ bPy =1, (9)
) = =g 3)

For a given distribution oW (b) Eq. (9) can be viewed
as the equation determining the value of the singularity
exponentg.

Noting that the functiorG(8) = (b#) satisfiesG(0) =
and G"(B) > 0 for B8 > 0, we have the following

In the case of thermal equilibrium the principle of equipar-
tition of energy requires thatx?) is proportional to the
temperature, so thay?) and(»?) cannot be independent as
known by the name of fluctuation-dissipation theorem [13].1
For_(bz) > 1 there is no stqtionary solution f.()r(t)2>.""nd necessary conditions in order to hagein the range of
it diverges ag — 0. All higher moments diverge in the 0,2):

same way and it is common sense that such divergence’

means that the system is not statistically stationary. How- [nlOG'(B) =(Inb) <0, (10)
ever, this common sense turns out to be wrong, as we prove A 5

in the following discussion. We have statistically steady G(2) =) >1. (11)
fluctuation with infinite variance in the limit of — oo. The latter condition (11) is obviously the condition for

Let the distribut_ion functjons ob(¢) and f(r) be W(b) the divergence of variancéy?) = =. The former con-
andU( f), respectively, which are assumed to be indepengtion (10) corresponds to the requirement of stationarity,
dent of time. The statistics of(¢) is estimated theoreti- namely, if this inequality does not hold the magnification

cally by introducing the characteristic functiod(p,7),  rate is so strong that we do not have a statistically steady
which is the Fourier transform of its probability density, gi5te.

plx,2): ) We can prove the uniqueness and stability of the steady
_ (. ipx(y _ ipx solution (6) in the following way. Assuming the exis-
Z(p,1) = (e ) f,me plx, 1) dx. () tence of a steady solution of Eq. (5) the deviation from
Fourier transform of Eq. (1) gives the following basic the steady solutionZ(p,t) = Z(p,1) — Z(p), satisfies
equation for the characteristic function: the same equation with a different boundary condition,
ob (XN /- ipf(D) Z(0,1) = 0. By taking absolute values of the equation we
Zp,t + 1) = (eP7) (e'PTT) have an inequality:
_ f W) Zp,0) db D(p),  (5) 1Z(p.1 + DI = max|Z(p. D} (). (12)
0

where max --} shows the maximum value. Therefore,
where®(p) is the characteristic function for the additive in the case|®(p)| < 1 for p # 0, which is satisfied
noise,f (). By assuming Taylor expansion aroupd= 0  whenever the external noise is continuously distributed,
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FIG. 1. An example of temporal fluctuations for= 0.3. 10 10 1 1370 10 10 10

o ) FIG. 2. Log-log plot of the cumulative distribution of for
the distribution of x converges quickly to the steady ¢ = 0.3.

solution, (6), even starting from any initial distribution of

{x(0)}. Namely, the conditions (10) and (11) are necessary _ .
and sufficient conditions for the power law with infinite It should be remarked that the theoretical estimate of

variance. Eq. (15) shows nice fits even out of the range of appli-

Numerical simulation of Eq. (1) can be done easily.cability, 8 > 2. The reason for this lucky coincidence
In order to specify the statistics we set the followingiS not clear but it is easy to tell that power law distribu-
distributions fors andf, respectively: tion tails are a generic property of Eq. (1). Actually, if

| = ) the proballbility tr)neasur(t;d{(g) >> ldis nonze;o there ex-
_ 4 - —vks[ O ists a real number,. and({x(¢)") is divergent form = n..
W) c ,;0(1 e e 6( c k)’ (13) This singularity implies that the distribution af¢) in the
steady state has a power tail of Eq. (7) wigh= n,. [10].

U(f) = e I (14)  On the contrary in the case of no magnification we have
V2w o an analytic solution foZ(p) and the distribution tails de-
Here, the variable b takes a discrete value in CaY faster than any power. o o
{0, ¢,2¢, 3¢, .. .} following the Poisson distribution, ant Since the Langevin equation or its discrete version is
takes a continuous value following the symmetric GaussPne of the most basic stochastic equations not only in
ian. The second order moment bfis given as(b2) = physics, potential applicability of our result is expected to

e (1 + e 7)/(1 — e 7)?, and the distributiow(p) b€ very wide. A direct application can be found in the

is controlled by a non-negative parameter In our nu- cross-disciplinary field between statistical physics and eco-
merical simulations the maximum time steps are typically’omics. Stanley and his co-workers recently discovered
5 x 107 and we observe the distribution f} for time nontrivial scaling relations in economic activities such as

steps after 1000. Figure 1 shows a typical example of terStOCk market prices [15]. It is pointed out that the dis-
poral fluctuations foxkb2) > 1 with y = 0.32, ando = tribution of averaged stock market price changes are well
0.86, which we chose for convenience of numerical cal-
culations. As shown in Fig. 2 we can find a clear power

law tail in the cumulative distribution of(¢), P(=|x|).

By repeating numerical calculations several times for
each parameter we have confirmed that the power law
exponent is independent of initial conditions, seeds of
random number generator, and the functional forms of
U(f), as expected. s

For different values ot the power law exponents are
estimated numerically as shown in Fig. 3. In the case that
distribution of b is given by Eq. (13) we can derive an
analytic relation betweeg andc¢ from Eqg. (9) [14]:

Pl —eMI(B+ 1)/yP =1, (15)

wherel'(B) is the gamma function. We can confirm from ;5 3 1he power law exponeng vs the amplification

Fig. 3 that Eq. (15) fits the numerical estimation quiteparameterc. Squares represent numerically estimated values
nicely. and the curve gives the theoretical relation, Eq. (15).
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P(> |z|) follow a power law distribution with divergent moment.

1 This is a new general route to power law fluctuations and
it is now obvious that the divergence of variance is the
most essential key ingredient for power law distributions.
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