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A general discrete stochastic process involving random amplification with additive external noise is
analyzed theoretically and numerically. Necessary and sufficient conditions to realize steady power
law fluctuations with divergent variance are clarified. The power law exponent is determined by a
statistical property of amplification independent of the external noise. By introducing a nonlinear effect
a stretched exponential decay appears in the power law. [S0031-9007(97)03737-X]
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Power law distributions have been found in divers
fields of science and the subjects of physicists’ research
growing wider. Quantitative analyses are now in progre
on a variety of topics showing power law distributions
for example, fish school sizes [1], frequency of jams i
Internet traffic [2], and even stock market price chang
[3]. In view of statistical physics the most important task i
to elucidate general physical mechanisms underlying the
power law behaviors.

A recently proposed concept of self-organized critica
ity is based on the idea that open systems showing pow
law distributions may have a mechanism of controlling in
herent parameters automatically to be at the critical po
of second order phase transition [4]. This idea has be
confirmed theoretically for a sandpile model of avalanch
that the critical point is stable in the renormalized macro
scopic limit [5], and its applications are increasing rapidly

Another general mechanism of producing power law
has been found in the study of stochastic processes invo
ing multiplicative noises [6]. A typical equation of mul-
tiplicative process is given by a linear Langevin equatio
with a randomly changing coefficient. The effect of suc
a random coefficient has been intensively analyzed rel
ing to the study of nonlinear dynamical systems becau
statistical properties of some nonlinear systems can
approximated by such stochastic equations [7,8]. It is i
tuitively obvious that multiplicative noises drastically en
hance the additive random force in the Langevin equati
and we have much larger fluctuations than in the case
constant coefficient. Numerical study and theoretical a
proaches strongly indicate the existence of a statistica
steady state in which temporal fluctuations follow a powe
law distribution for a wide range of parameters in the ran
dom coefficient.

Theoretical analysis of the Langevin equation with
random coefficient is generally very difficult, because th
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master equation cannot be reduced to a solvable Fokk
Plank equation due to large fluctuations except in ve
special cases [9]. By this approach a sophisticated
proximate theory has clarified that the Langevin equati
with a random coefficient follows a steady distributio
whose tails decay either following a stretched exponent
form or a power law [10].

There is a powerful theoretical method for distribution
with large fluctuations, the characteristic functions. Th
characteristic function is a Fourier transform of the prob
bility density and the power law tails for an infinite vari
ance distribution can be represented by a singularity at
origin of the corresponding characteristic function. Th
mathematical theory of stable distributions, which hav
power tails, is based on the characteristic functions [1
and some physical systems showing power law distrib
tions have been solved rigorously by using characteris
function techniques [12].

In this paper we focus on temporal fluctuations havin
infinite variances. We introduce a discrete time version
the Langevin equation with a random coefficient and sol
the steady state solution by introducing the characteris
function. We show rigorously that the tails of steady sta
probability density follow a power law in a very wide rang
of parameters. The necessary and sufficient conditions
realize the power laws with divergent variance is clarifie
also the uniqueness and stability of the power law soluti
is proved theoretically. The exponent of the power la
is not universal but changes continuously depending
the statistics of the coefficient. An exact formula is foun
for the exponent which clearly shows that the expone
is independent of the statistics of additive random for
although the random force is necessary to realize t
steady state. We confirm these results also by numer
simulations. In the final part of the paper we discuss brie
a possible direct application to the distribution of stoc
© 1997 The American Physical Society
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market price changes and rapid decays of distribution ta
due to a nonlinear effect.

The model equation is given by the following simple
discrete version of the linear Langevin equation:

xst 1 1d ­ bstdxstd 1 fstd , (1)

wherefstd represents a random additive noise as usual, a
bstd is a non-negative stochastic coefficient which mea
dissipation for bstd , 1 and magnification forbstd .

1. The case of magnification never occurs in a stab
thermal equilibrium because it corresponds to “negativ
viscosity” in the continuum Langevin equation. Howeve
magnification of fluctuations occurs in unstable system
in general; therefore, we believe Eq. (1) is a very bas
starting point for general phenomena. In the followin
discussion, for simplicity, we assume thatbstd and fstd
are independent white noises having stationary statist
andfstd is symmetric.

Taking the average over the square of Eq. (1) we ha
the following equation for the second order moment:

kx2st 1 1dl ­ kb2l kx2stdl 1 k f2l , (2)

wherek· · ·l denotes an average over realizations.
As kb2l and k f2l are constants we can readily solve

Eq. (2). Forkb2l , 1 there is a stationary solution,

kx2l ­
k f2l

1 2 kb2l
. (3)

In the case of thermal equilibrium the principle of equipa
tition of energy requires thatkx2l is proportional to the
temperature, so thatk f2l andkb2l cannot be independent as
known by the name of fluctuation-dissipation theorem [13
For kb2l . 1 there is no stationary solution forkxstd2l and
it diverges ast ! `. All higher moments diverge in the
same way and it is common sense that such divergen
means that the system is not statistically stationary. Ho
ever, this common sense turns out to be wrong, as we pro
in the following discussion. We have statistically stead
fluctuation with infinite variance in the limit oft ! `.

Let the distribution functions ofbstd andfstd be W sbd
andUs fd, respectively, which are assumed to be indepe
dent of time. The statistics ofxstd is estimated theoreti-
cally by introducing the characteristic function,Zsr, td,
which is the Fourier transform of its probability density
psx, td:

Zsr, td ­ keirxstdl ­
Z `

2`

eirxpsx, td dx . (4)

Fourier transform of Eq. (1) gives the following basic
equation for the characteristic function:

Zsr, t 1 1d ­ keirbstdxstdl keirfstdl

­
Z `

0
W sbdZsbr, td db Fsrd , (5)

whereFsrd is the characteristic function for the additive
noise,fstd. By assuming Taylor expansion aroundr ­ 0
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Eq. (5) derives a set of equations for moments includin
Eq. (2) for the lowest order. When the variance diverge
Zsr, td have singularity atr ­ 0 in the limit of t ! `

and Taylor expansion cannot be applied for the stead
solution. In such a case the following fractional powe
term can be assumed for the lowest order term becau
the characteristic function is generally a continuous func
tion [11],

Zsr, `d ­ 1 2 const3 jrjb 1 . . . , 0 , b , 2 ,
(6)

which is equivalent to the assumption of power law tail
in the probability distribution:

Ps$jxjd ~ x2b , (7)

where Ps$jxjd represents the cumulative distribution
defined as

Ps$jxjd ­
Z 2jxj

2`
psx0d dx0 1

Z `

jxj
psx0d dx0. (8)

Introducing the steady solution’s functional form,
Eq. (6), into Eq. (5), we have the following consistency
condition for the lowest order ofr in the case that the
additive noise’s variance is finite andFsrd is expanded
in integer powers ofr.

kbbl ­ 1 . (9)

For a given distribution ofW sbd Eq. (9) can be viewed
as the equation determining the value of the singulari
exponent,b.

Noting that the functionGsbd ; kbbl satisfiesGs0d ­
1 and G00sbd . 0 for b . 0, we have the following
necessary conditions in order to haveb in the range of
s0, 2d:

lim
b!10

G0sbd ­ kln bl , 0 , (10)

Gs2d ­ kb2l . 1 . (11)

The latter condition (11) is obviously the condition for
the divergence of variance,kx2l ­ `. The former con-
dition (10) corresponds to the requirement of stationarity
namely, if this inequality does not hold the magnification
rate is so strong that we do not have a statistically stea
state.

We can prove the uniqueness and stability of the stea
solution (6) in the following way. Assuming the exis-
tence of a steady solution of Eq. (5) the deviation from
the steady solution,̄Zsr, td ; Zsr, td 2 Zsrd, satisfies
the same equation with a different boundary condition
Z̄s0, td ­ 0. By taking absolute values of the equation we
have an inequality:

jZ̄sr, t 1 1dj # maxhjZ̄sr, tdjj jFsrdj , (12)

where maxh· · ·j shows the maximum value. Therefore
in the casejFsrdj , 1 for r fi 0, which is satisfied
whenever the external noise is continuously distribute
967
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FIG. 1. An example of temporal fluctuations forc ­ 0.3.

the distribution of x converges quickly to the steady
solution, (6), even starting from any initial distribution o
hxs0dj. Namely, the conditions (10) and (11) are necessa
and sufficient conditions for the power law with infinite
variance.

Numerical simulation of Eq. (1) can be done easil
In order to specify the statistics we set the followin
distributions forb andf, respectively:

W sbd ­
1
c

X̀
k­0

s1 2 e2gde2gkd

µ
b
c

2 k

∂
, (13)

Us fd ­
1

p
2p s

e2f2y2s2

. (14)

Here, the variable b takes a discrete value in
h0, c, 2c, 3c, . . .j following the Poisson distribution, andf
takes a continuous value following the symmetric Gaus
ian. The second order moment ofb is given askb2l ­
c2e2gs1 1 e2gdys1 2 e2gd2, and the distributionW sbd
is controlled by a non-negative parameterc. In our nu-
merical simulations the maximum time steps are typica
5 3 107 and we observe the distribution ofhxj for time
steps after 1000. Figure 1 shows a typical example of te
poral fluctuations forkb2l . 1 with g ­ 0.32, ands ­
0.86, which we chose for convenience of numerical ca
culations. As shown in Fig. 2 we can find a clear pow
law tail in the cumulative distribution ofxstd, Ps$jxjd.

By repeating numerical calculations several times f
each parameter we have confirmed that the power l
exponent is independent of initial conditions, seeds
random number generator, and the functional forms
Us fd, as expected.

For different values ofc the power law exponents are
estimated numerically as shown in Fig. 3. In the case th
distribution of b is given by Eq. (13) we can derive an
analytic relation betweenb andc from Eq. (9) [14]:

cbs1 2 e2gdGsb 1 1dygb11 ­ 1 , (15)

whereGsbd is the gamma function. We can confirm from
Fig. 3 that Eq. (15) fits the numerical estimation quit
nicely.
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FIG. 2. Log-log plot of the cumulative distribution ofx for
c ­ 0.3.

It should be remarked that the theoretical estimate
Eq. (15) shows nice fits even out of the range of appl
cability, b . 2. The reason for this lucky coincidence
is not clear but it is easy to tell that power law distribu
tion tails are a generic property of Eq. (1). Actually, if
the probability measure ofbstd . 1 is nonzero there ex-
ists a real numbernc andkxstdnl is divergent forn $ nc.
This singularity implies that the distribution ofxstd in the
steady state has a power tail of Eq. (7) withb ­ nc [10].
On the contrary in the case of no magnification we hav
an analytic solution forZsrd and the distribution tails de-
cay faster than any power.

Since the Langevin equation or its discrete version
one of the most basic stochastic equations not only
physics, potential applicability of our result is expected t
be very wide. A direct application can be found in the
cross-disciplinary field between statistical physics and ec
nomics. Stanley and his co-workers recently discovere
nontrivial scaling relations in economic activities such a
stock market prices [15]. It is pointed out that the dis
tribution of averaged stock market price changes are we

FIG. 3. The power law exponentb vs the amplification
parameterc. Squares represent numerically estimated value
and the curve gives the theoretical relation, Eq. (15).
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FIG. 4. Log-log plot of the cumulative distribution with the
rapid decay. The threshold value isxc ­ 50.0 with c ­ 0.3.

approximated by a symmetric power law distribution wit
an exponent aboutb ­ 1.4. The present authors (H. T
and A.-H. S.) have developed mathematical models
stock market prices and showed that price changes o
market can be approximated by Eq. (1) with the distrib
tion of bstd given by Eq. (13) [14]. Intuitively a stock
price change in a unit time is either magnified or damp
randomly with an additive external noise. Our general r
sult summarized in Fig. 3 immediately indicates that th
best parameter for describing the long tail of real econom
data can easily be estimated.

In real systems there is no rigorous power law dist
butions, but power tails are normally accompanied wi
rapid decays for very large values. Our model equatio
Eq. (1), can easily be modified to manage this deviati
from the power law. In Eq. (1) we assume thatbstd is inde-
pendent ofxstd; however, a system size limitation, for ex
ample, may introduce a correlation betweenbstd andxstd.
As a simplest modification we assume thatbstd , 1 for
jxstdj . xc, wherexc is a given threshold value. In Fig. 4
a steady state distribution with this modification is show
We can find a power law distribution with a rapid deca
aroundxc which can be approximated by a stretched e
ponential form.

Summarizing the results we have clarified necessary a
sufficient conditions for a quantity described by Eq. (1)
h
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follow a power law distribution with divergent momen
This is a new general route to power law fluctuations a
it is now obvious that the divergence of variance is t
most essential key ingredient for power law distribution
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