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Landau Diamagnetism in a Dissipative and Confined System
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Starting from a quantum Langevin equation of a charged particle in a magnetic field we present a
fully dynamical calculation of the orbital diamagnetism, from which the effect of dissipation on Landau
diamagnetism can be assessed. The treatment throws light on subtle issues of confined boundaries and
the approach to equilibrium of a quantum dissipative system. Additional results are presented for the
diamagnetism in a confined parabolic potential. [S0031-9007(97)03710-1]

PACS numbers: 03.65.Sq, 05.40.+j, 05.60.+w, 76.40.+b

The problem of a charged quantum particle in theFokker-Planck equation [6]. We may remark in passing
presence of a magnetic field serves in quantum mechanitsat the Ohmic spectral density is indeed the relevant one
as a paradigm of exactly solvable models [1], results ofvhen the bath is constituted of fermions and the impor-
which made possible a major breakthrough in solid statéant excitations are those of electrons and holes, near the
physics when Landau gave the theory of diamagnetisrrermi surface [11]. For the purpose of investigating quan-
[2]. Today, the physics of Landau levels is of greattum transport properties we find it more convenient to use
interest in, e.g., the quantum Hall effect [3] and highan equivalent formulation given by Ford and co-workers
temperature superconductivity [4]. The issue that wg12,13], and Zwanzig [14], employing the Heisenberg pic-
address in this Letter is what happens to the dynamics dfire. Starting again from the Feynman-Vernon Hamil-
a charged particle in an external magnetic field when it igonian these authors derive a quantum Langevin equation
in contact with a dissipative quantum bath. The analysifor the particle at hand. We use the latter as the ba-
of this question puts the problem in the general contexsis of our further discussion of transport properties. In
of dissipative quantum mechanics, a subject that has segrarticular, we focus attention to the important issue of
a recent revival, mainly through the work of Leggett anddiamagnetism and the role of the boundary of the sys-
co-workers [5—7]. It turns out that the dynamics of atem inside which the electrons move. The diamagnetism
charged particle in a magnetic field (like a free quantunis first calculated as a fully time-dependent quantity. Its
particle [8] or a quantum oscillator [9]), in the presence ofasymptotic(s — <o) limit yields the equilibrium answer.
what is called an Ohmic bath, can be tackled exactly.  For the sake of pedagogical interest we may refer to the

The Leggett approach is based on the Feynman-Vernotelebrated Bohr—Van Leeuwen theorem which states that
model in which a particle, moving in an arbitrary poten-“diamagnetism does not exist in classical statistical me-
tial, is assumed to be linearly coupled with a collectionchanics” [15]. The reason for this is an intriguing one:
of quantum harmonic oscillators [10]. While the starting The contribution of the bulk electrons to the diamagnetic
point is a many body Hamiltonian of a particle interactingmoment cancels exactly the contribution of the boundary
with bosonic excitations, Caldeira and Leggett show thatlectrons in classical theory [2]. Landau, of course, pro-
the projected dynamics of the particle is dissipative. Invided a quantum formulation as mentioned earlier, with-
particular, when the number of oscillator modes is infi-out apparently worrying about what the boundary does
nitely large and their spectral density is of the Ohmic[16,17]. We now raise the question: Does Landau dia-
character, one has quantum Brownian motion in the senseagnetism survive dissipation?
that in the corresponding classical limit, the underly- Another way of framing the same question is: Since
ing Wigner distribution function obeys the well known dissipation is known to lead to classical-like motion of
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a quantum system, should one expect to see the Bohithe following variables:
Van Leeuwen theorem restored in the limit of infinite

damping? We show that a proper analysis of this question z=x+1iy, F=f.+ify,
requires a careful treatment of the boundary, bringing ¢B (6)
out subtle roles of thermodynamic limit and approach to Yy=v tiwc, @e =

equilibrium. The confined boundaries are, of course, of
great interest in their own right in view of the presentwhere w. is called the cyclotron frequency. Thus the
upsurge of activity in mesoscopic structures. In the lasmotion in thexy plane is governed by the equation

part of this Letter, we present results for the diamagnetism . F@
when the electrons are constrained to move in a two- it vyz= o (7)
dimensional parabolic potential in the plane normal to the
applied field. whose solution reads
The Feynman-Vernon Hamiltonian for a particle of 1. _
chargee in a magnetic field can be written as 2(1) = § 2(t){1 — exd—y(r — 1)}
t /
2 — — / (t)
+ f drexp—yr) f dt' exp(yt') —=
- o2 o),
2 1 2 2 ®)
* ; [2_m, pj + 5 mwjla; =) } (1) Where we have sed(to) = 0, without loss of generality.

From Eq. (8) and its time derivative, several correlation
wherep andr are the momentum and position operatorsfunctions of interest for magnetotransport behavior, e.g.,
of the particle,p; andq; are the corresponding variables the velocity-correlation and mean-squared displacement,
for the reservoir particles, and is the vector potential. can be calculated [18].
For the Ohmic dissipation model, the distribution of Our main interest here, however, is in investigating the
oscillators is such that [8] issue of diamagnetism in a dissipative environment, for

- which we need to calculate the time-dependent quantity
J(w) = > Z m(ia);ﬁ(a) - wj) = vyow, 2 el el
/ M) = Sy = yi)) = o ImdGz* + 29,

where vy is the constant friction. Integrating out the ©)

reservoir variables from Hamilton’s equations of motion
one obtains a quantum Langevin equation [13] The solution given in Eq. (8) allows us, of course, to com-
] e . puteM, as a function of time. This task can be carried out
mit + myr — — (r X B) = £(1), (3)  on the basis of our results for the magnetotransport behav-
ior, presented in [18]. Here, however, we are interested
wheref () is the operator form of the “noise.” Its spectral in only an equilibrium property, and therefore, in order
properties are characterized by the symmetric correlatioto check whether we can recover the (expected) Landau

and the commutator, answer in equilibrium, we first consider the limigs= 0
2m7 andr = . We find
/ i
ol f5) = 505 222 [ o o o e o
M, = — 5 5 cot .
y COtf< )cos{w(z ~ L @ 2mem J - y? + (0 — w,) 2kgT
2kpT (10)
om - It is clear then that when the frictiony = 0, the
L falt), () =8ap —y do hwsiMe(t—1], Lorentzian inw reduces tard(w — w.) and therefore
17 0
(5) 0 _ le| 7 ’"( ho, >
M; = e cot 2T ) (12)

a, B being Cartesian indices, y, andz. The angular
brackets in Egs. (4) and (5) imply thermal averaging ovelnterestingly, this is just a piece of the Landau answer
the heat bath. which arises in the equilibrium calculation if one is not
For the sake of definiteness we assume the magnet@areful in computing the role of the “boundary” electrons
field to be directed along th& axis and concentrate on [2]. As has been lucidly discussed by Peierls [17], it is
the motion in thexy plane, the motion along being the boundary electrons which have the so-called “skipping
merely that of a free, quantum particle, in a dissipativeorbits” that lead to “edge currents,” which make an
environment. This is most conveniently done in terms ofessential contribution to diamagnetism.
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Therefore, in order to obtain the correct result ¢ _ z(0) B
we must consider anew the dissipative dynamics of thez( )= Wi — w- [explw 1) = explw-1)]
charge in a finite volume. As the latter is difficult to 1 t
implement mathematically, we employ a trick due origi- + [ fo dr[expw.(r — 7)
nally to Darwin [19]. Darwin was interested in calculating F(r)
M? from the equilibrium trace formula and, in order to —expw_(t — 7)] —
obtain the correct Landau expression, had to first put in a
contrived constraining parabolic potent'}@i&(x2 + y?)in (13)
the Hamiltonian, complete the calculation of the trace, angvhere
then switchk to zero. We adopt the same approach here,

in which case, the equation of motion (7) is modified to _ 2 _ 4k
q @) we=-—F = P @i, 0f=-.

b

i+ 7yz + (k/m)z = F(t)/m. 12) (14)
The solution to Eq. (12) [witl(0) = 0] now reads substituting the result in Eq. (9) and letting— «, we
| finally obtain
lely 1 [* r( fiw )( 1 1 >< wa we >
M, = | liw cot - - .
¢ 2mme |lwy — w_|? m —oo dw heco 2kpT ) \w + iwi o +iw* /J\w — iwg o — iw_
(15)

Before taking the Darwin limit (i.e.k — 0 or wo — 0) in Eq. (15) it is important to compute the integral over
. This we do by closing the contour in the upper-half plane and noting that the cotangent function has poles at
hw/2kgT = in, n integer. The result is

le|h¢ - n’m? 1
M, = — Im = + —
: mc = (nm + vi)(nm — vy)(nm + vE)(nm — vo) (vi — v¥)
y [ (vi)fcot(*vi) B (v*)*cot(v*) “ (16)
vy +v)@F +v2)  (v- + ) + vy)
where | bolic potential. If the latter is switched off (i.emo — 0)
hy ho-+ 2 )
_ L= * vy (£ — ive) .
g szT s V+ szT . (17) vy = IO m’ v = _(g + lVC),
Equation (16) is our final result for the orbital (diamag- fiw. hwo (18)
netic) magnetization of a charged particle in a quantum Ve T SkeT’ YO keT

dissipative environment, and moving in a confining para-
| The result for the magnetization then becomes

le|fi { - dnmlv. Ve 1 sinh(2v,) }
= + S
M. 2mc ; (2 + 2 —n2a)? +4n2a22 24+ w2 2 sink(v.) +si() ) (19)
which in the limit of zero dampingZ = 0) yields the Landau answer
M = leln [i - cotr’(vc)] (20)
' 2mce L v,

Equation (19) is our central result which generalizes the Landau expression to be applicable in a situation in which the
system has scattering processes that can lead to decoherence of Landau orbits. In a sense it is the analog of the Drude
formula for electrical conductivity [20].

As mentioned earlier, the expression given in Eqg. (16) for a confining parabolic potential is interesting in itself as it
can be realized in mesoscopic quantum structures [21]. We therefore consider the limiting case of Eq. (16) for zero
damping, which leads to

le|7 1 [ 2 L/ > [ 2 ([
Mz:%2—2{< 1/0+V3—VC>COU‘{E< v0+vg—vc>i|—< V0+Vg+vC>COU{E< V0+V3+Vc>i|}.
vy + Vg

(21)
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The analysis presented above helps sharpen our notion
of the approach to equilibrium. The quantum Langevin
equation builds in at the outset, through fluctuation-
dissipation relations [cf. Egs. (4) and (5)], the fact that
time-dependent quantities approach their equilibrium val-
ues, in the asymptotic limit — «. However, we find that
the answer is not unique in the sense that the litnits 0
and + — oo are not interchangeable. The correct Lan-
dau expression for diamagnetism results if we first take
t — o, i.e., allow the particle to come to thermal equi-
librium in the presence of a confining potential, and then
switch k off to zero. The same situation is encountered in
the corresponding classical problem [22]. This aspect has
to do with the special role of boundary electrons in pro-
ducing diamagnetism—although they are fewer in num-
ber, they make a giant contribution to the diamagnetic 0
moment [2].

We plot in Figs. 1(a) and 1(b)M, (divided by
le|lh/2mc, the Bohr magneton) versué for different
values ofv,., in accordance with Eqg. (19). It is seen that
M, monotonically approaches zero for a large enoughEN
value of the damping, although this approach is slower
the larger v. is. This observation underscores the
point made earlier concerning the competition betwee
coherence and dissipation. A large value gf gives
strong quantum effects which, however, ultimately give
way to seemingly classical-like effects when dissipation

(2mc/eh)M

=
2
<
g
n<

[ is strong. Thus the Bohr—Van Leeuwen theorem is re- 09 p (b) ]
stored for large damping. The other point to note, which -1 : : . '
has also been made earlier, is that for= 0, Eq. (19) 0 20 0oL 80 100

reduces to the Landau answer given by Eq. (20).The

latter, for large values of the cyclotron frequeney, ' 'C:1. (a) Plotofi2mc/le| )M, versus the damping parame-

. . L . ter ¢ for two different values of the dimensionless cyclotron
yields a saturation value of the magnetization Wh'Chfrequencyy.. Upper curvew, = 0.5; lower curve:r, = 1.0.

equals one (negative) Bohr magneton. This is evidenp) Same as in (a). Upper curve, = 10.0; lower curve:
from Fig. 1(b), for ». = 20.00, when only the lowest ». = 20.0. Note that the approach to zero, for large values of
Landau level is preferentially occupied. £, is now much slower than that depicted in (a).

In conclusion, we have presented an exact treatment of
the Feynman-Vernon model of a charged particle mov- . o
ing in a magnetic field, in the quantum dissipative regime This work was completed when S.D. was a visitor to

have derived interalia the diamagnetic moment for motiorjn® Forschungszentrum, Julich. S.D. would like to thank
the Alexander von Humboldt Stiftung for supporting his

in a confined parabolic potential, which is of interest in"~ = . . o
mesoscopic systems, and have examined the issue of L Sit, the Theorie 3_group fo_r Its generous hospltall_ty, and
dau diamagnetism. Normally, diamagnetism is difficult ia Feng for help in numerical computation. He s also
to measure as it is masked by a stronger paramagnetic Jgrateful to Narendra Kumar for a critical reading of the
fect. However, with present technology it is possible toMmanuscript.
grow two-dimensional electron films. Hence, by applying
a magnetic field both perpendicular (yielding diamagnetic
as well as paramagnetic contributions) and parallel (with
only paramagnetic effect) to the film, it should be possible
to experimentally separate out the diamagnetic contribu-
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