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Nonadditive Quantum Code
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Every good quantum error-correcting code discovered thus far, such as those known as “stabilize
or “additive” codes, has had the structure of an eigenspace of an Abelian group generated by tens
products of Pauli matrices. In this Letter we present the first example of a code that is better tha
any code of this type. It encodes six states in five qubits and can correct the erasure of any sing
qubit. [S0031-9007(97)03628-4]

PACS numbers: 89.70.+c, 03.65.Bz
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Most present models for quantum computers requi
quantum error-correcting codes [1–4] for their operation
Many recent papers have been devoted to the construc
of these codes [5–8]. Up to now all good codes know
have fallen into the class of what has been calle
“stabilizer” or “additive” codes [7,8]. These are not the
most general quantum codes, however, and it was an op
question as to whether more general codes could be m
powerful. In the present Letter we present a code whi
is not a stabilizer code, and which is strictly better tha
any code of this type.

Stabilizer codes are defined as follows. Let the e
traspecial groupE be generated by all tensor prod
ucts M1 ≠ M2 ≠ · · · ≠ Mn, where eachMi is one of
hI , sx , sy, szj, where

I ­

µ
1 0
0 1

∂
, sx ­

µ
0 1
1 0

∂
,

sy ­

µ
0 2i
i 0

∂
, sz ­

µ
1 0
0 21

∂
,

sx, sy, sz being the Pauli matrices. Then astabilizer
code is a joint eigenspace of an Abelian subgroup ofE.

The new code.—Since a quantum code is a subspac
of the Hilbert spaceC2n

, we may define it by giving the
orthogonal projection matrix onto this subspace. Sin
the Pauli matrices together withI form a basis for the
space of2 3 2 Hermitian matrices, we may write the
projection as a linear combination of elements ofE. In
this form, the new codeQ is defined by the projection
matrix

P ­ 1y16f3I ≠ I ≠ I ≠ I ≠ I

1 sI ≠ sz ≠ sy ≠ sy ≠ szdcyc

1 sI ≠ sx ≠ sz ≠ sz ≠ sxdcyc

2 sI ≠ sy ≠ sx ≠ sx ≠ sydcyc

1 2ssz ≠ sx ≠ sy ≠ sy ≠ sxdcyc

2 2sz ≠ sz ≠ sz ≠ sz ≠ szg ,

where the subscript “cyc” indicates that all five cyclic
shifts occur. It is straightforward to verify thatP2 ­ P
and TrsPd ­ 6, so that the eigenvalues ofP are 1 (6
0031-9007y97y79(5)y953(2)$10.00
re
s.
tion
n
d

en
ore
ch
n

x-
-

e

ce

times) and 0 (26 times). ThusP projects onto a six-
dimensional space.

It remains to verify that the code has minimum distanc
2; that is, that it can correct one erasure. For a cod
to correct one erasure it suffices for it to be orthogona
to its image under any single qubit error. SinceQ is
cyclic, it is enough to consider an error in the first qubit
There are thus three cases to check: conjugation ofP by
h ­ M ≠ I ≠ I ≠ I ≠ I ≠ I, whereM is one ofsx, sy,
sz , obtainingP0 ­ hPh. We verify in each case that
PP0 ­ 0. Thus Q is a ssss5, 6, 2dddd code, as claimed.(A
ssssn, K , ddddd code is a code that encodesK states inn qubits,
and can correctd 2 1 erasures [orsd 2 1dy2 errors].)

Further properties of the code.—Since the code is
cyclic, we label the qubits by0, 1, . . . , 4 smod 5d. The
code also has the symmetry defined by

k ! 2k smod 5d, sx ! sy , sy ! 2sx . (1)

There are further symmetries that do not permute th
qubits, for example, conjugation by the element

sz ≠ sx ≠ sy ≠ sy ≠ sx (2)

of E, or any of its cyclic shifts. These five elements
generate a subgroup ofE of size 32, which we callH.
Moreover, since this group is Abelian, it has 32 one
dimensional eigenspaces, andQ is the span of six of
them. [Each of these eigenspaces is assss5, 1, 3dddd stabilizer
quantum code.] This gives an explicit basis for our code
namely,

j00000l 2 sj00011ldcyc 1 sj00101ldcyc 2 sj01111ldcyc

(3)

together with all five cyclic shifts of

j00001l 2 j00010l 2 j00100l 2 j01000l 2 j10000l

1 j00111l 2 j01110l 2 j11100l 1 j11001l 1 j10011l

2 j01011l 1 j10110l 2 j01101l 1 j11010l 2 j10101l

2 j11111l . (4)

By examining how single bit errors act on these
32 eigenspaces, one can again see that the image ofQ
© 1997 The American Physical Society 953
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under such an error is orthogonal toQ, by noting that the
six new eigenspaces are disjoint from the original six.

The symmetries discussed above generate a group
order 640. There is an additional symmetry, which c
be described as follows: First, permute the columns
k ! k3, that is, exchange the qubits 2 and 3. Next, f
each qubit, negate one of the Pauli matrices and excha
the other two, where the Pauli matrices negated aresz ,
sy, sx, sx, sy, respectively. This increases the siz
of the symmetry group to 3840. The group acts as t
permutation groupS5 on the qubits. This is the full group
of symmetries of the code, that is, the full subgroup
the semidirect product ofS5 and SUs2d5 that preserves the
code [9].

In principal one can construct other codes in a simil
manner, e.g., as the spans of translates of self-d
stabilizer codes. LetC0 be a self-dual additive code o
lengthn with associated stabilizer quantum codeQ0 and
let C be the union ofK cosets ofC0. If C has minimum
distanced, then there exists anssssn, K , ddddd quantum code.
This code is obtained as the span of the translates ofQ0

under the operators inC. For our code, for instance,C0

is the ((5,1,3)) additive codeH andC is C0 1 ssC0dcyc,
where

s ­ sx ≠ sz ≠ I ≠ I ≠ I .

Thus, for example, we have

P ­ P0 1 ssP0s21dcyc , (5)

whereP0 is jxl kxj andjxl is given by Eq. (3).
We remark that the only stabilizer code that containsQ

is the trivial code consisting of the entire Hilbert space.
How the code was discovered.—Investigation of

the linear programming bound for quantum cod
(cf. [8,10,11]) revealed that for a length 5 code of min
mum distance 2 the dimensionK ­ 6 is extremal. In fact,
the inequalities cannot even be satisfied for anyreal num-
ber K . 6. This suggested assss5, 6, 2dddd code as a natu-
ral place to look. Further, the weight enumerator of a
such code is uniquely determined by linear programmin
with the normalization used in [11], it is

Asu, yd ­ 36u5 1 60uy4 1 96y5. (6)
954
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The best stabilizer code of this length and distance
dimensionK ­ 4 ([8], Table III).

Rather than look for a projection matrix with thi
weight enumerator, we decided to look for a matrix wi
this weight enumerator that happened to be a projecti
We describe a near projection matrixM as a linear
combination of elements ofE. Beginning with a random
matrix M, we first scaled the contribution from th
terms of each weight so as to force the desired wei
enumerator. We then replacedM by M 0 ­ 2M2 2 M4.
(This moves small eigenvalues ofM closer to 0 and
large eigenvalues closer to 1.) We then iterated th
two steps. On our first attempt, the algorithm converg
to a (complex) projection matrix. Since the algorith
preserves symmetry, by choosing our initial guess to
real, we obtained a real code equivalent to the co
described above. We omit the details of transforming t
computer output into the above form. Note that we d
not choose our initial guess to be cyclic, but nonethele
obtained a code equivalent to one with cyclic symmetry

We thank Rob Calderbank for helpful discussion
concerning the description of the code in terms of cose
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