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Nonadditive Quantum Code
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Every good quantum error-correcting code discovered thus far, such as those known as “stabilizer”
or “additive” codes, has had the structure of an eigenspace of an Abelian group generated by tensor
products of Pauli matrices. In this Letter we present the first example of a code that is better than
any code of this type. It encodes six states in five qubits and can correct the erasure of any single
qubit. [S0031-9007(97)03628-4]

PACS numbers: 89.70.+c, 03.65.Bz

Most present models for quantum computers requirdimes) and 0 (26 times). Thu® projects onto a six-
quantum error-correcting codes [1—4] for their operationsdimensional space.
Many recent papers have been devoted to the construction It remains to verify that the code has minimum distance
of these codes [5—8]. Up to now all good codes knowr2; that is, that it can correct one erasure. For a code
have fallen into the class of what has been calledo correct one erasure it suffices for it to be orthogonal
“stabilizer” or “additive” codes [7,8]. These are not the to its image under any single qubit error. Sin@eis
most general quantum codes, however, and it was an opeyclic, it is enough to consider an error in the first qubit.
question as to whether more general codes could be moikhere are thus three cases to check: conjugatio” bf
powerful. In the present Letter we present a code which =M ® I ® I ® I ® I ® I, whereM is one ofo,, oy,
is not a stabilizer code, and which is strictly better thano,, obtainingP’ = nP7n. We verify in each case that
any code of this type. PP' = 0. ThusQ is a((5,6,2)) code, as claimed.(A

Stabilizer codes are defined as follows. Let the ex{(n, K, d)) code is a code that encodéstates im qubits,
traspecial groupE be generated by all tensor prod- and can correci — 1 erasures [ofd — 1)/2 errors])

ucts M, ® M, ® --- ® M,, where eachM; is one of Further properties of the code-Since the code is
{1,040y, 0}, where cyclic, we label the qubits by, 1,...,4 (mod5). The
< 1 0 0 1 code also has the symmetry defined by
G )
0 1 10 k — 2k (mod5), oy — Oy, oy — —0oy. (1)
o, = <0 _i>, o, = <1 0 ) There are further symmetries that do not permute the

i 0 U qubits, for example, conjugation by the element

oy, oy, o, being the Pauli matrices. Thenstabilizer
0, ®0,®0,0®0,® 0y (2)

code is a joint eigenspace of an Abelian subgroup of

The new code-Since a quantum code is a subspaceof E, or any of its cyclic shifts. These five elements
of the Hilbert S]Oac_élz , we may define it by giving the generate a subgroup @ of size 32, which we calH.
orthogonal projection matrix onto this subspace. Sincavioreover, since this group is Abelian, it has 32 one-
the Pauli matrices together with form a basis for the dimensional eigenspaces, am#l is the span of six of
space of2 X 2 Hermitian matrices, we may write the them. [Each of these eigenspaces {$1, 3)) stabilizer
projection as a linear combination of elementstof In. quantum code.] This gives an explicit basis for our code,
this form, the new cod& is defined by the projection namely,

matrix

+(I®0,®0,®0y® 0;)cy
together with all five cyclic shifts of

|00001) — ]00010) — [00100) — [01000) — [10000)
+100111) — 01110y — [11100) + [11001) + [10011)
—101011) + [10110) — |01101) + [11010) — [10101)
where the subscript “cyc” indicates that all five cyclic ~ . 4)

shifts occur. It is straightforward to verify th&> = P By examining how single bit errors act on these
and TKP) = 6, so that the eigenvalues @f are 1 (6 32 eigenspaces, one can again see that the image of

+(I®0,®0,®0;,® 0y)ey
—(I®0y®0,® 0T, ®Ty)ye
+ 20, ® 0 ® 0y ® Ty ® Ty)cye

—20,®0,®0,®0,®0,],
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under such an error is orthogonaldq by noting that the The best stabilizer code of this length and distance has
six new eigenspaces are disjoint from the original six.  dimensionk = 4 ([8], Table II).

The symmetries discussed above generate a group of Rather than look for a projection matrix with this
order 640. There is an additional symmetry, which canweight enumerator, we decided to look for a matrix with
be described as follows: First, permute the columns athis weight enumerator that happened to be a projection.
k — k3, that is, exchange the qubits 2 and 3. Next, forWe describe a near projection matri¥ as a linear
each qubit, negate one of the Pauli matrices and exchangembination of elements df. Beginning with a random
the other two, where the Pauli matrices negatedaare matrix M, we first scaled the contribution from the
oy, Oy, Oy, Oy, respectively. This increases the sizeterms of each weight so as to force the desired weight
of the symmetry group to 3840. The group acts as thenumerator. We then replacad by M’ = 2M? — M*.
permutation grougs on the qubits. This is the full group (This moves small eigenvalues af closer to 0 and
of symmetries of the code, that is, the full subgroup oflarge eigenvalues closer to 1.) We then iterated these
the semidirect product ofs and SU2)’ that preserves the two steps. On our first attempt, the algorithm converged
code [9]. to a (complex) projection matrix. Since the algorithm

In principal one can construct other codes in a similapreserves symmetry, by choosing our initial guess to be
manner, e.g., as the spans of translates of self-duakal, we obtained a real code equivalent to the code
stabilizer codes. Le€, be a self-dual additive code of described above. We omit the details of transforming the
lengthn with associated stabilizer quantum cof@g and  computer output into the above form. Note that we did
let C be the union oK cosets ofCy. If C has minimum not choose our initial guess to be cyclic, but nonetheless
distanced, then there exists afin, K, d)) quantum code. obtained a code equivalent to one with cyclic symmetry.
This code is obtained as the span of the translategqof We thank Rob Calderbank for helpful discussions
under the operators i@. For our code, for instanc&,  concerning the description of the code in terms of cosets.
is the((5,1,3) additive codeH andC is Cy + (0 Co)cye,

where
oO=0,090,®10111].
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