
VOLUME 79, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 AUGUST 1997

ith
ure
n a
Double-Layer Quantum Hall Antiferromagnetism at Filling Fraction n 5 2yyym
wherem is an Odd Integer

S. Das Sarma,1 Subir Sachdev,2 and Lian Zheng1
1Department of Physics, University of Maryland, College Park, Maryland 20742-4111

2Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 16 January 1997)

A low energy action for double-layer quantum Hall systems at filling fractionsn ­ 2ym (where
m is an odd integer) is introduced. Interlayer antiferromagnetic exchange induces a phase w
canted spin order, as well as a spin-singlet phase. Universal properties of zero and finite temperat
transitions are obtained. We compute the critical temperature at which the canted order vanishes i
Kosterlitz-Thouless transition. Implications for recent light scattering experiments atn ­ 2 are noted.
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There has been much recent work on double-layer qua
tum Hall systems, the majority of which has focused on th
case where the electron tunneling rate between the two l
ers is small [1–3]. Then, the electron layer index plays th
role of a pseudospin, and for the case where the total filli
factor n ­ 1ym (wherem is an odd integer), very inter-
esting new physics arises from long-range correlations
the pseudospin orientation. However, the tunneling ter
acts like a “magnetic field” in pseudospin space, and
spontaneous long-range pseudospin order, and the ass
ated finite temperature (T ) phase transition, is only possible
when the tunneling is vanishingly small [4].

Stimulated by recent light scattering experiments [5]
n ­ 2, we present here a general low energy theory f
double-layer systems at fillingn ­ 2ym in the presence of
moderate interlayer tunneling. We find a rich phase di
gram with interesting transitions both atT ­ 0 andT . 0.
In contrast to the phases atn ­ 1ym, which are driven
by ordering in pseudospin space, the phases atn ­ 2ym
are associated with ordering in the physical electronic sp
space. Consequently, our order parameters are defi
even in the presence of interlayer tunneling; indeed, mo
erate interlayer tunneling is required to stabilize some
our phases. We will use our results to interpret recent e
periments [5], and argue that they show indirect eviden
for our T . 0 phase transition.

It is useful to begin discussion of the physics atn ­
2ym by considering the case where the layer separatio
d, is much larger than the magnetic length,lo . Then
the two layers (labeled 1,2) are approximately decouple
and each separately has filling fractionn1 ­ n2 ­ 1ym.
Their ground states will be the familiar Laughlin states fo
m . 1, or a fully filled lowest Landau level atm ­ 1,
both of which have a large energy gap to all charge
excitations [6]. These states are also fully spin polarize
and there is significant intralayer ferromagnetic exchan
[2,3,7]. The low-lying excitations in each layer are spi
waves which have a small excitation gap given precise
by the Zeeman energygmBH (the gyromagnetic ratiog
0031-9007y97y79(5)y917(4)$10.00
n-
e

ay-
e

ng

in
m
so
oci-

at
or

a-

in
ned
d-
of
x-
ce

n,

d,

r

d
d

ge
n
ly

and the Bohr magnetonmB will henceforth be absorbed
by a rescaling of the magnetic fieldH). For smallg, a
complete description [3,8] of the low energy excitations
each layer can be given in terms of an action for unit vec
fields $n1,2 ( $n2

1,2 ­ 1) representing the orientation of th
ferromagnetic orders. Spin waves are small fluctuatio
of $n1,2 about an ordered state, while charged quasipartic
are Skyrmion [37] textures of$n1,2.

Now reduce the value ofd and couple$n1 and $n2. The
simplest allowed coupling between them is anantiferro-
magneticexchange interaction. These considerations le
to the following imaginary-time (t) effective action (in
units with h̄ ­ kB ­ 1)

S0 ­
Z

d2x
Z 1yT

0
dt sLFf $n1g 1 LFf $n2g 1 J $n1 ? $n2d ,

LFf $ng ; iM0
$As $nd ? ≠t $n 1

r0
s

2
s=x $nd2 2 M0

$H ? $n .

(1)

The intralayer ferromagnetic spin correlations [3,7,8] a
controlled byLF : M0 ­ 1y4pml2

o is the magnetization
density per layer,r0

s is the spin stiffness of each layer whe
they are well separated [form ­ 1, we have [9]r0

s ­
e2ys16

p
2p elod], and $A accounts for the Berry phase ac

cumulated under time evolution of the spins [eijk≠Aksndy
≠nj ­ ni ]. The interlayer antiferromagnetic correlation
are induced by the positive couplingJ , M0D2

sasyU
where Dsas is the tunneling matrix element betwee
the layers, andU , e2yelo is the Coulomb interaction
energy.

Two potentially important terms have been omitted fro
S0 (and from S1 below): the Hopf term which endows
the Skyrmions with fractional statistics, and the lon
range Coulomb interaction between the Skyrmions. Th
are simple physical arguments which justify this. A
the layers are antiferromagnetically correlated, Skyrmio
in one layer will be paired with anti-Skyrmions in th
other, and their correlated motion will then produce o
posite, canceling phases under the Hopf term. A sim
© 1997 The American Physical Society 917
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cancellation occurs in double-layer antiferromagnets [1
where the Berry phases of hedgehogs in one layer are n
tralized by those of antihedgehogs in the other; in th
case, numerical results for universal quantum-critical pro
erties are in good agreement with predictions of theori
assuming this cancellation [10]. The Coulomb potenti
of a Skyrmion is also neutralized by its anti-Skyrmio
partner in the opposite layer. Further, the charge g
in well separated layers ensures that the Skyrmionyanti-
Skyrmion pairs remain short-lived virtual fluctuations: w
believe this charge gap persists through the quantu
critical points to be considered below. Note that no ne
term is necessary to induce charge transfer between the
ers: a hedgehogyantihedgehog pair in the two layers corre
sponds to an event transferring Skyrmion number betwe
them. Such spacetime singularities are absent in the st
continuum limit but appear when a short-distance regula
ization is introduced. Finally, form . 1 and largerg, the
spin 0 Laughlin quasiparticles become the lowest ener
charged excitations, but these can be neglected for sim
reasons.

Now we parametrize

$ni ­ s21dis1 2 $L2d1y2 $n 1 $L , (2)

where the constraints$n2
1,2 ­ 1 are now replaced by$n2 ­

1 and $L ? $n ­ 0. Because the layers are antiferromag
netically correlated we expect that$L will not be too large.
We insert (2) into (1), expand to quadratic order in$L, and
then integrate out the$L degrees of freedom. This yields
the following effective action for the antiferromagnetic or
der parameter$n

S1 ­
c
2t

Z
d2x

3
Z 1yT

0
dt

∑
s=x $nd2 1

1
c2

µ
≠ $n
≠t

2 i $H 3 $n

∂2∏
,

where t ­ sJy2r0
s M2

0 d1y2 and c ­ s2r0
s JyM2

0 d1y2. This
is precisely the action of the2 1 1 dimensional quantum
Os3d nonlinear sigma model in a fieldH coupling to the
conserved globalOs3d charge. It is expected to apply
to double-layer quantum Hall systems withn ­ 2ym at
length scales larger thanL21 , lo.

The T ­ 0 phase diagram [11,12] ofS1 is shown
in Fig. 1. For n ­ 2 a topologically identical phase
diagram was obtained by a Hartree-Fock (HF) analys
of a realistic, microscopic double-layer Hamiltonian [13
and is shown as an inset; this agreement provides furt
justification for the validity ofS0,1. The HF theory will be
used to computerenormalizedT ­ 0 energy scales which
completely specify the correlators ofS1 at low T : in this
manner we determine observables of the system with
free parameters (form . 1 these energy scales remain a
phenomenological parameters). We use the Hamilton
H ­ H0 1 HI with
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FIG. 1. T ­ 0 phase diagram ofS1. The phases are pictori-
ally represented by the orientation of the spins in the two layer
with H pointing vertically upwards; C [N] has a brokenOs2d
[Os3d] spin symmetry. There is a Kosterlitz-Thouless transi
tion at T ­ Tc . 0 in C. The inset shows the phase diagram
obtained from a microscopic HF calculation atn ­ 2 (m ­ 1),
where the asterisks represent the two experimental samples
Ref. [5]. We argue in the text that the HF theory overestimate
the stability of the C phase, and that experiments suggest th
the actual SS region encloses the left sample in the inset.

H0 ­ 2
Dsas

2

X
as

sCy
1asC2as 1 H.c.d

2
H
2

X
ias

sC
y
iasCias ,

whereCias annihilates an electron in the lowest Landau
level in layer i (i ­ 1, 2) with spin s (s ­ 61) in the
z direction [we assume$H ­ s0, 0, Hd] and with intra-
Landau level indexa. Interlayer tunneling induces the
symmetric-antisymmetric energy separationDsas. The
Coulomb interaction part ofH is

HI ­
1
2

X
s1s2

X
ij

X
a1a2

1
V

X
q

Vijsqde2q2l2
oy2eiqxsa12a2dl2

o

3 C
y
ia11qys1

C
y
ja2s2

Cja21qys2 Cia1s1 , (3)

whereq is a wave vector,V is the area of the sample, and
the interaction potentials areVij ­ 2pe2yeq for i ­ j
andVij ­ s2pe2yeqde2qd for i fi j.

We now describe the phases in Fig. 1. The quantu
phase transitions between these phases are continuous
are accompanied by the softening of the intersubband sp
density excitations.

(I) Fully polarized ferromagnet (FPF).—In S1 this is
present forH * ctL2. This phase haskn1zl ­ kn2zl ­ 1.
It is continuously connected to the larged limit discussed
earlier.

(II) Canted (C).—We now havekn1zl ­ kn2zl fi 0,
and, for example,kn1xl ­ 2kn2xl fi 0. This phase has
a broken spin rotationalOs2d symmetry in thex-y plane.
Form ­ 1, the HF phase boundary between the FPF and
phases isV2yDsas ­ sDsasyHd f1 2 sHyDsasd2g, and that
between the C and SS phases isV2yDsas ­ 1 2 sHyDsasd2,
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P
q e2q2l2

oy2fV11sqd 6 V12sqdg; a wave
function for the C phase is obtained by the standard H
methods. Form . 1 a caricature of the wave function
is two separate Laughlin states atn1 ­ n2 ­ 1ym but
polarized in the orientations shown.

(III) Neel (N).—This is the limiting case ofC with
kn1zl ­ kn2zl ­ 0 achieved atH ­ 0. Now anOs3d spin
rotation symmetry is broken.

(IV) Spin Singlet (SS).This corresponds to the quantum
disordered phase of theOs3d sigma model. The ground
state is a spin singlet and is therefore unaffected byH: its
wave function is the same as that atH ­ 0. For m ­ 1,
in the independent electron HF picture, the electrons
the layer-symmetric subband, with spin-up and spin-dow
levels equally populated. However, it is well known tha
HF theory overestimates the energy of anonmagnetic
phase like SS because correlations between opposite
electrons, important for reducing the Coulomb energy, a
now absent. It is likely, therefore, that thereal SS phase
is stable over a larger parameter region than that in our
approximation, but the topology of the HF phase diagra
in the inset of Fig. 1 (which is identical to that forS1)
should be correct. To build in charge correlations, on
can use an approach similar to the Heitler-London pictu
of the hydrogen molecule, and consider pairs of electro
with their charge localized in opposite layers, while the
spins form singlet bonds. Indeed, such a charge-localiz
picture was behind our introduction of the actionsS0,1. In
such an approach, an alternative wave function for the
phase (valid form ­ 1 andm . 1) can be obtained in the
J ! ` limit: pairs of electrons in opposite layers bind to
form spin singlet, charge2e bosons, which then condense
into a boson Laughlin state at filling fraction1y2m, as
demanded by the strength of the magnetic flux.

It is worth noting explicitly here that the HF compu
tations atm ­ 1 allow us to assert that all the differen
phases ofS1 are the ground states in realistic paramet
regimes. Form . 1, it remains an open question as t
whether the phases ofS1 other than FPF are accessible
although we consider it a likely possibility that at least
will exist.

We now turn to the physics atT . 0. Only the N and
C ground states have a broken spin rotation symmet
the Os3d symmetry of the former implies that the sym
metry is restored at anyT . 0, while theOs2d symmetry
of the latter implies a Kosterlitz-Thouless phase trans
tion at a T ­ Tc . 0. We may characterize the orde
parameter fluctuations in both phases by aT ­ 0 spin
stiffnessrssHd such that the energy cost of rotations o
the order parameter by a slowly varying anglefsrd is
Ef ­ frssHdy2g

R
d2r j=fsrdj2. A crude estimate [3,13]

of Tc is Tc ø rssHd, although this must fail asH ! 0.
In the latter limit it is possible to obtain an exact lead
ing asymptotic result [11]Tc ­ 2prss0dy lnfrss0dyHg for
lnfrss0dyHg ¿ 1. Form ­ 1 we computedrssHd in the
HF calculation and the results are shown in Fig. 2. W
see that theTc estimates are well in the experimentall
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FIG. 2. Ground state spin stiffnessrssHd of a n ­ 2 double-
layer system obtained from the microscopic HF calculation
It is nonzero only in the N and C phases. The solid lin
has H ­ 0, the dashed lineH ­ 0.05e2yelo, and the dotted
line H ­ 0.08e2yelo. The layer separation isd ­ 1.0lo , and
we have also included corrections from finite layer thickne
dw ­ 0.8lo. In this figure,V2 is fixed to be0.36e2yelo for
the given values ofd and dw , and rssHd is shown as a
function of Dsas for several values ofH. (In typical GaAs-
based samples,e2yelo is on the order of50 100 K, which
givesrs , 1 2 K.)

accessible regimes for typical GaAs-based semiconduc
samples. We emphasize that the Kosterlitz-Thouless tr
sition atTc is present even in the presence of interlayer tu
neling, unlike the case for the pseudospin transition [2,
at n ­ 1ym.

A more precise approach to theT . 0 properties is to
expand in the deviation from theH ­ T ­ 0 quantum-
critical point between the N and SS phases att ­ tc ,
L21. This quantum-critical point is described by
renormalizable quantum field theory (with upper-critica
spatial dimensiond ­ 3), and so all thermodynamic
properties are universal functions of energy scales char
terizing “relevant” perturbations from this critical point
corrections due to irrelevant operators require addition
energy scales and will be neglected here. Two of t
relevant energy scales are the “bare” couplingsT and H
(there is no renormalization of the scale ofH because it
couples to a conserved charge [11]), and a third (the la
measures deviation oft from tc. For t . tc we choose
[14] this energy scale to beD, the energy gap of the
SS state atT ­ H ­ 0, while for t , tc we choose the
renormalized spin stiffnessrss0d of the N state also at
T ­ H ­ 0. As t approachestc we haveD , st 2 tcdn,
while rss0d , stc 2 tdsd21dn , wheren is the correlation
length exponent of theclassical three-dimensionalOs3d
ferromagnet. Form ­ 1, the microscopic HF calcula-
tion gives D ­ Dsas

p
1 2 V2yDsas, and rss0d ­ hf1 2

sDsasyV2d2gy8pVj
P

qsqlod2e2q2l2
oy2V11sqd. Notice that

these are consistent with the mean field exponentn ­ 1y2
in the upper-critical dimensiond ­ 3.
919
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One of our main results, which follows from the consid
erations above, is that the critical temperatureTc at which
the ordering of the C phase disappears obeys, fort . tc,

Tc ­ HC.sDyHd . (4)

HereC.sud is a universal function ofu with no arbitrary
scale factors, and obeys the exact relationC.su $ 1d ­ 0
(because [11,13] theT ­ 0 boundary of the SS phase
is given precisely by the conditionD ­ H). A similar
scaling form holds fort , tc with Tc ­ HC,sssrss0dyHddd.
We computed the functionsC.,, in an expansion iń ­
3 2 d using recently developed methods [15] and foun
to leading order

C.sud ­ f33s1 2 u2dys10p2´dg1y2; (5)

the structure of the subleading terms is quite complicat
and is similar to that discussed elsewhere [15]. Th
result is valid for allu, except foru very close to 1; in
that case we find, by a mapping to the dilute Bose g
problem, the exact asymptotic result [11,16]C.su !
1d ­ y lns1yydyf4 ln lns1yydg with y ­ 1 2 u, which
holds for lns1yyd ¿ 1. For t , tc the´ expansion holds
for C,suy

p
´ d and we obtained

C,suy
p

´ d ­ fs33 1 3u2dys10p2´dg1y2. (6)

Again this result is valid for allu, but now fails for
u ! ` (which isH ! 0). While TcsH ­ 0d . 0 for all
´ , 1, we noted earlier thatTcsH ­ 0d ­ 0 for ´ ­ 1;
the latter property will not appear at any order in the´

expansion. Using results special tod ­ 2 for H ! 0
discussed earlier, we have instead the exact asympto
form C,su ! `d ­ 2puy ln u.

We draw attention to a particularly simple and striking
limit of the above results. Att ­ tc we have Tc ­
KH whereK ­ C.s0d ­ C,s0d is a universal number.
Further, we do not expect any large or singular variation
Tc if t is close to but not exactlytc. As bothH andTc are
directly measurable energies, this relationship is amena
to a direct experimental test. On the theoretical side, wh
at present there is only the leading term in a´ expansion for
the value ofK , it should be possible to obtain a reasonabl
precise result using quantum Monte Carlo simulation
of double-layer lattice spin systems [10,17], which hav
been limited toH ­ 0 so far. Universality implies that
these lattice models will have the same value ofK as
the quantum Hall system, and it appears to us that t
simulation forH fi 0 should also be free of the fermion
sign problems.

We have also obtained results in the´ expansion for the
crossovers of the dynamic spin susceptibility at frequen
v as universal functions of the energy ratiosvyT , HyT ,
and DyT [rss0dyT ]: the methods are similar to those of
Ref. [15], and results will be presented elsewhere.

We turn now to a comparison with recent light scatterin
experiments [5]. The high density sample (the righ
sample in the inset of Fig. 1) shows “mode-softening
consistent with aT . 0 phase transition which we identify
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with that above our C phase. Using input parameters fro
the HF calculation in (6), we obtain the prediction ofTc ,
0.5 K, to be compared with the experimental valueTc ,
0.52 K: the good agreement must be considered fortuito
until the accuracy of thé expansion is better understood
The same sample also shows markedT dependence for
T . Tc in the light scattering spectrum atv of order or
greater thanT : a natural explanation for this could be a
crossover into the “high-T” region above the quantum-
critical point [15]. The lower density sample (the lef
sample in the inset of Fig. 1) shows no mode softeni
and little T dependence in the light scattering spectrum
we suggest that this sample is in the SS phase. The
computation puts this sample in the C phase, but as
discussed earlier, this could be in error because the
theory overestimates the stability of the C phase.

Finally we note that we expect similar consideration
to apply to all double-layer quantum Hall systems wit
n ­ 2n1 where a single layer at fillingn1 forms a fully
polarized quantum Hall state with a charge gap.
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