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Double-Layer Quantum Hall Antiferromagnetism at Filling Fraction » = 2/m
wherem is an Odd Integer
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A low energy action for double-layer quantum Hall systems at filling fractions 2/m (where
m is an odd integer) is introduced. Interlayer antiferromagnetic exchange induces a phase with
canted spin order, as well as a spin-singlet phase. Universal properties of zero and finite temperature
transitions are obtained. We compute the critical temperature at which the canted order vanishes in a
Kosterlitz-Thouless transition. Implications for recent light scattering experiments=at are noted.
[S0031-9007(97)03742-3]
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There has been much recent work on double-layer quarand the Bohr magnetop will henceforth be absorbed
tum Hall systems, the majority of which has focused on théby a rescaling of the magnetic field). For smallg, a
case where the electron tunneling rate between the two lagomplete description [3,8] of the low energy excitations of
ersis small [L-3]. Then, the electron layer index plays theeach layer can be given in terms of an action for unit vector
role of a pseudospin, and for the case where the total fillindields 7 , (7;%2 = 1) representing the orientation of the
factor v = 1/m (wherem is an odd integer), very inter- ferromagnetic orders. Spin waves are small fluctuations
esting new physics arises from long-range correlations inf 7, , about an ordered state, while charged quasiparticles
the pseudospin orientation. However, the tunneling ternare Skyrmion [37] textures of ,.
acts like a “magnetic field” in pseudospin space, and so Now reduce the value aof and couplei; andn,. The
spontaneous long-range pseudospin order, and the assosimplest allowed coupling between them is amtiferro-
ated finite temperaturd{ phase transition, is only possible magneticexchange interaction. These considerations lead
when the tunneling is vanishingly small [4]. to the following imaginary-time %) effective action (in

Stimulated by recent light scattering experiments [5] atunits withz = kg = 1)

v = 2, we present here a general low energy theory for 1T

double-layer systems at filling = 2/m in the presence of So = f d2x[ dr (Lp[i] + Le[ia] + Jity - ia),
moderate interlayer tunneling. We find a rich phase dia- 0 (1)
gram with interesting transitions both&t= 0 andT > 0. R L .op° s .
In contrast to the phases at= 1/m, which are driven Lr[n]=iMoA(®) - d,n + j (Vi) — MoH - .
by ordering in pseudospin space, the phases at2/m

are associated with ordering in the physical electronic spifl he intralayer ferromagnetic spin correlations [3,7,8] are
space. Consequently, our order parameters are definé@ntrolled by Lr: My = 1/4wmli?% is the magnetization
even in the presence of interlayer tunneling; indeed, moddensity per layerp? is the spin stiffness of each layer when
erate interlayer tunneling is required to stabilize some othey are well separated [fon = 1, we have [9]p, =

our phases. We will use our results to interpret recent exe?/(16v/2 €l,)], and A accounts for the Berry phase ac-
periments [5], and argue that they show indirect evidenceumulated under time evolution of the spires;[0A(n)/

for our T > 0 phase transition. dn; = n;]. The interlayer antiferromagnetic correlations

It is useful to begin discussion of the physics:at=  are induced by the positive coupling ~ MyA2, /U
2/m by considering the case where the layer separatiorwhere Ay,; is the tunneling matrix element between
d, is much larger than the magnetic length, Then the layers, and/ ~ ¢?/el, is the Coulomb interaction
the two layers (labeled 1,2) are approximately decouplecnergy.
and each separately has filling fraction = v, = 1/m. Two potentially important terms have been omitted from
Their ground states will be the familiar Laughlin states forS, (and from S; below): the Hopf term which endows
m > 1, or a fully filled lowest Landau level az = 1, the Skyrmions with fractional statistics, and the long-
both of which have a large energy gap to all chargedange Coulomb interaction between the Skyrmions. There
excitations [6]. These states are also fully spin polarizedre simple physical arguments which justify this. As
and there is significant intralayer ferromagnetic exchangéhe layers are antiferromagnetically correlated, Skyrmions
[2,3,7]. The low-lying excitations in each layer are spinin one layer will be paired with anti-Skyrmions in the
waves which have a small excitation gap given preciselyther, and their correlated motion will then produce op-
by the Zeeman energyugH (the gyromagnetic ratigr  posite, canceling phases under the Hopf term. A similar
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cancellation occurs in double-layer antiferromagnets [10], 4
where the Berry phases of hedgehogs in one layer are neu-
tralized by those of antihedgehogs in the other; in this H
case, numerical results for universal quantume-critical prop-
erties are in good agreement with predictions of theories
assuming this cancellation [10]. The Coulomb potential

of a Skyrmion is also neutralized by its anti-Skyrmion
partner in the opposite layer. Further, the charge gap C\
in well separated layers ensures that the Skyrpfaoti- /
Skyrmion pairs remain short-lived virtual fluctuations: we
believe this charge gap persists through the quantum- sS
critical points to be considered below. Note that no new

term is necessary to induce charge transfer between thelay- 0 o
ers: a hedgehg@ntihedgehog pair in the two layers corre- Vte 1/t
sponds to an event transferring Skyrmion number betweepi 1. 7 = ( phase diagram of,. The phases are pictori-
them. Such spacetime singularities are absent in the striglly represented by the orientation of the spins in the two layers,
continuum limit but appear when a short-distance regularwith H pointing vertically upwards; C [N] has a broken(2)
ization is introduced. Finally, fom > 1 and largerg, the ~ [O(3)] spin symmetry. There is a Kosterlitz-Thouless transi-
spin 0 Laughlin quasiparticles become the lowest energ}fon 87 = 7. > 0in C. The inset shows the phase diagram

h d o but th b | df imil btained from a microscopic HF calculationzat= 2 (m = 1),
charged excitations, but these can be neglected for similgfhere the asterisks represent the two experimental samples of

FPF

(¢}
0 V./Asas 4

reasons. Ref. [5]. We argue in the text that the HF theory overestimates

Now we parametrize the stability of the C phase, and that experiments suggest that

the actual SS region encloses the left sample in the inset.
A= (=11 = L)"Yh + L, () A
) N ‘7-[0 == ;as Z(Ciraa'CZQ(r + HC)

where the constraint&;, = 1 are now replaced by? = ao
1 andL - n = 0. Because the layers are antiferromag- H 1

. = - 5 Z U-Ciozociour s
netically correlated we expect thatwill not be too large. 2 =

We insert (2) into (1), expand to quadratic ordecinand here ;. annihilates an electron in the lowest Landau
then integrate out thé degrees of freedom. This yields |gye) in layeri (i = 1,2) with spin o (o0 = *1) in the
the following effective action for the antiferromagnetic or- . yirection [we assume? = (0,0, H)] and with intra-

der parameter Landau level indexa. Interlayer tunneling induces the
c symmetric-antisymmetric energy separatidn,;. The
S = > f d*x Coulomb interaction part of{ is

1/T > N 2 . 1 1 —qP12)2 igu(ay—an)l
x] dr[(Vxﬁ)ZJri(a—"—inﬁ) } 5{1_5 > E%Vﬁi(Q)e /2l ’
0

C2 oT o0y ij aja;
t t
wherer = (J/Zp?Mg)l/z andc = (Zp?J/Mg)l/Z' This X Cia|+q}.zr|CjazzrzC,jaz-*-qvva'zcial(rl s (3)

is precisely the action of th2 + 1 dimensional quantum wheregq is a wave vector{) is the area of the sample, and

O(3) nonlinear sigma model in a field coupling to the the interaction potentials aré; = 2me?/eq for i = j

conserved globaD(3) charge. It is expected to apply andV;; = 2me?/eq)e 9 fori # j.

to double-layer quantum Hall systems with= 2/m at We now describe the phases in Fig. 1. The quantum

length scales larger thah™! ~ 1,. phase transitions between these phases are continuous and
The T = 0 phase diagram [11,12] of, is shown are accompanied by the softening of the intersubband spin

in Fig. 1. For v =2 a topologically identical phase density excitations.

diagram was obtained by a Hartree-Fock (HF) analysis (l) Fully polarized ferromagnet (FPF=In S; this is

of a realistic, microscopic double-layer Hamiltonian [13], present fold = ctA2. This phase hag;.) = (n,.) = 1.

and is shown as an inset; this agreement provides furthétis continuously connected to the larddimit discussed

justification for the validity ofSy ;. The HF theory willbe earlier.

used to computeenormalizedl’ = 0 energy scales which (I Canted (C)—We now have(n,) = (ny,) # 0,

completely specify the correlators 6f at low 7: in this  and, for example{n;,) = —(ny,) # 0. This phase has

manner we determine observables of the system with na broken spin rotationad (2) symmetry in thex-y plane.

free parameters (forn > 1 these energy scales remain asForm = 1, the HF phase boundary between the FPF and C

phenomenological parameters). We use the Hamiltoniaphases i9/_ /A = (Agws/H)[1 — (H/Ags)?], and that

H = Hy + H; with between the C and SS phase¥is/Ag =1 — (H/Ags)?,
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where V. = ¢ S e 752[Vii(g) = Via(g)]; a wave 0.030F
function for the C phase is obtained by the standard HF
methods. Fomn > 1 a caricature of the wave function 0.025F
is two separate Laughlin states at = v, = 1/m but .
polarized in the orientations shown. < 0.020F
(1) Neel (N).—This is the limiting case ofC with %
(n1,) = (ny,) = 0 achieved alf = 0. Now anO(3) spin < 0.015F
rotation symmetry is broken. =
(IV) Spin Singlet (SS)his corresponds to the quantum \é 0.010
disordered phase of th@(3) sigma model. The ground
state is a spin singlet and is therefore unaffectedibyts 0.005
wave function is the same as thatfat= 0. Form =1,
in the independent electron HF picture, the electrons fill o000 4o vy T
the layer-symmetric subband, with spin-up and spin-down 1.0 1.5 2.0 2.5
levels equally populated. However, it is well known that V_/A,

HF theory overestimates the energy ofnanmagnetic

phase like SS because correlations between opposite sgif- 2. Ground state spin stiffnegs(#) of a » = 2 double-

; ; er system obtained from the microscopic HF calculations.
electrons, important for reducing the Coulomb energy, ar(%{wis ng’nzero only in the N and C phasrés. The solid lina

now absent. lItis likely, therefore, that theal SS phase has H = 0, the dashed lined = 0.05¢>/€l,, and the dotted

is stable over a larger parameter region than that in our Hime # = 0.08¢%/¢l,. The layer separation i8 = 1.0/,, and

approximation, but the topology of the HF phase diagranwe have also included corrections from finite layer thickness

in the inset of Fig. 1 (which is identical to that fdf)  dw = 0.8/,. In this figure,V_ is fixed to be0.36¢*/el, for

should be correct. To build in charge correlations, ond€ given values ofd and d,. and p,(H) is shown as a
L. . . unction of Ay, for several values off. (In typical GaAs-

can use an approach similar to the Heitler-London picturg;qeq sampless/el, is on the order of50—100 K, which

of the hydrogen molecule, and consider pairs of electrongivesp, ~ 1-2 K.)

with their charge localized in opposite layers, while their

spins form singlet bonds. Indeed, such a charge-localized

picture was behind our introduction of the actidfyg. In  accessible regimes for typical GaAs-based semiconductor

such an approach, an alternative wave function for the SSamples. We emphasize that the Kosterlitz-Thouless tran-

phase (valid forn = 1 andm > 1) can be obtained in the sition atT is present even in the presence of interlayer tun-

J — <o limit: pairs of electrons in opposite layers bind to neling, unlike the case for the pseudospin transition [2,3]

form spin singlet, chargee bosons, which then condense atv = 1/m.

into a boson Laughlin state at filling fractioly2m, as A more precise approach to tlfe> 0 properties is to

demanded by the strength of the magnetic flux. expand in the deviation from thH# = T = 0 quantum-

It is worth noting explicitly here that the HF compu- critical point between the N and SS phases at 7. ~
tations atm = 1 allow us to assert that all the different A~!. This quantum-critical point is described by a
phases ofS; are the ground states in realistic parameterenormalizable quantum field theory (with upper-critical
regimes. Form > 1, it remains an open guestion as to spatial dimensiond = 3), and so all thermodynamic
whether the phases df; other than FPF are accessible, properties are universal functions of energy scales charac-
although we consider it a likely possibility that at least Cterizing “relevant” perturbations from this critical point;
will exist. corrections due to irrelevant operators require additional

We now turn to the physics g > 0. Only the N and energy scales and will be neglected here. Two of the
C ground states have a broken spin rotation symmetryrelevant energy scales are the “bare” coupliffigand H
the O(3) symmetry of the former implies that the sym- (there is no renormalization of the scale fbecause it
metry is restored at an§ > 0, while theO(2) symmetry  couples to a conserved charge [11]), and a third (the last)
of the latter implies a Kosterlitz-Thouless phase transiimeasures deviation af from #.. Fort > ¢, we choose
tion at a7 = T, > 0. We may characterize the order [14] this energy scale to bé, the energy gap of the
parameter fluctuations in both phases by a= 0 spin SS state ai" = H = 0, while for ¢+ < ¢, we choose the
stiffnessp,(H) such that the energy cost of rotations of renormalized spin stiffnesp,(0) of the N state also at
the order parameter by a slowly varying anghér) is 7 = H = 0. Asr approaches. we haveA ~ (r — 1.)”,

Eg = [p;(H)/2] [ d®rIVé(r)]%. A crude estimate [3,13] Wwhile p,(0) ~ (t. — 1)“"D”, wherew is the correlation
of T. is T. = ps(H), although this must fail agf — 0.  length exponent of thelassical three-dimensionaD(3)
In the latter limit it is possible to obtain an exact lead-ferromagnet. Fomn = 1, the microscopic HF calcula-
ing asymptotic result [11T. = 27 p,(0)/ In[p,(0)/H]for  tion gives A = Ag\/1 — V_/Aqs, and p,(0) = {[1 —
In[p,(0)/H] > 1. Form = 1 we computeths(H) inthe  (Ay/V-)*1/87Q}> 4 (ql,)%e 714/2V1(q). Notice that
HF calculation and the results are shown in Fig. 2. Wehese are consistent with the mean field expoment 1/2
see that theT. estimates are well in the experimentally in the upper-critical dimensiod = 3.
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One of our main results, which follows from the consid- with that above our C phase. Using input parameters from
erations above, is that the critical temperatfireat which  the HF calculation in (6), we obtain the predictionZof ~
the ordering of the C phase disappears obeys;, forz,., 0.5 K, to be compared with the experimental vallie ~
0.52 K: the good agreement must be considered fortuitous
T. = HV>(A/H). (4) until the acguracy ?)f the expansion is better understood.
Here W (u) is a universal function oft with no arbitrary The same sample also shows markéediependence for
scale factors, and obeys the exactrelation(u = 1) = 0 T > T, in the light scattering spectrum at of order or
(because [11,13] th& = 0 boundary of the SS phase greater thar": a natural explanation for this could be a
is given precisely by the conditioh = H). A similar  crossover into the “high*’ region above the quantum-
scaling form holds for < r. with T, = HWV(p,(0)/H).  critical point [15]. The lower density sample (the left

We computed the functior®-. - in an expansion iz =  sample in the inset of Fig. 1) shows no mode softening

3 — d using recently developed methods [15] and foundand little T dependence in the light scattering spectrum:

to leading order we suggest that this sample is in the SS phase. The HF
W (i) = [33(1 — 1)/(1072e)]/2: 5) computation puts this sample in the C phase, but as we

discussed earlier, this could be in error because the HF
the structure of the subleading terms is quite complicatetheory overestimates the stability of the C phase.

and is similar to that discussed elsewhere [15]. This Finally we note that we expect similar considerations
result is valid for allu, except foru very close to 1; in to apply to all double-layer quantum Hall systems with
that case we find, by a mapping to the dilute Bose gag = 2v; where a single layer at filling; forms a fully
problem, the exact asymptotic result [11,1%}.(x —  polarized quantum Hall state with a charge gap.

1) = yIn(1/y)/[4InIn(1/y)] with y =1 — u, which This work was supported by the U.S.-ONR (S.D. S. and
holds for I(1/y) > 1. Fort < t. the e expansion holds L.Z.) and by NSF Grant No. DMR 96-23181 (S.S.).

for ¥-(u/+/¢) and we obtained

V_(u/e) = [(33 + 3u?)/(107%e)]%.  (6)
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