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Novel Surface Modes in Spinodal Decomposition
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We study the spontaneous phase separation of a binary mixture in the presence of a flat wall, focusing
on the early stage of the demixing kinetics. Based on a Ginzburg-Landau type approach, we show the
existence of novel unstable concentration waves with wave vegjoparallel to the wall, which are
characterized by a surface dispersion relatiifk;) and amplitudes decaying exponentially into the
bulk. The surface modes are superimposed on the laterally averaged concentration profile and are
directly observable by experiment, if the wall right after a quench does not favor any of the two
components of the mixture. [S0031-9007(97)03722-8]

PACS numbers: 64.75.+g, 05.70.Ln, 68.10.—m

The question of how the process of spontaneous phaselt is important to note that the LSM are always present
separation in binary mixtures (spinodal decompositiongven if one of the two components of the binary mixture is
see, e.g., [1,2]) is influenced by the presence of walls hagreferentially attracted by the wall. Within the linearized
gained much attention recently both in experimental [3-theory, the LSM represent the solution of a homogeneous
8] and theoretical work [9—15]. The problem has mostlyboundary value problem, while the SDW can be regarded
been studied for polymer mixtures although it might alsoas originating from a particular integral of the correspond-
be important in other systems, as, for example, in biing inhomogeneous boundary value problem for vanishing
nary metallic alloys [16,17]. From a technological view- wave vector parallel to the wall. The linear superposition
point, binary polymer mixtures are particularly interesting,of both solutions gives the general solution in real space.
since the occurring structures during the phase separatidtowever, if the wall strongly favors one of the compo-
process may get frozen by a rapid quench into the glassyents, the LSM have amplitudes much smaller than the
state. In this way microstructures at surfaces on very smalimplitude of the SDW, and therefore it might be difficult
length scales can be produced [18]. to resolve them by experiment.

The experiments and theoretical studies quoted above Our starting point to describe spinodal decomposition
have shown that if one of the two components (sayin the presence of a wall is the time-dependent Ginzburg-
A) of a binary mixtureAB is preferentially attracted by Landau theory as used in previous theoretical work
the wall, surface-directed spinodal decomposition wavef9—15]. The wall is assumed to be a flat surface &t 0.
(SDW) emerge with wave vectors normal to the wall.In the half space = 0 the system is described by the local
These waves represent laterally averaged concentratigime-dependent order parametetx, 1) = ¢(p, z, t), rep-
profiles and have their origin in the rapid formation of resenting, e.g., the normalized difference in local coarse
a layer of theA-rich phase next to the wall at the very grained concentrations of the two pure components of a bi-
beginning of the phase separation process. nary polymer mixture. The free energy functioddly | =

In this Letter we focus on the opposite situation, whereF,[]+ F([¢] is decomposed into a bulk contribution
none of the two components or B has initially a strong  F,[4]= fz>0 d?x [% Ub(%¢)2 + f»()] and a surface
preference to be attracted (or repelled) by the wall. Experigontribution F,[¢]= [d? o[ (V) + £()]=o,
mentally, this situation may be realized, for example, byynere £, () and f,(4) are, respectively, the bulk and
an appropriate choice of the surface material or by tuningrface free energy densities, and the gradient terms take
the mixing ratio of the two components properly (see beé{ntg account the influence of spatial order parameter fluc-

low). We will show that under such conditions of “n_eutral” tuations. The time-dependent Ginzburg-Landau equation
walls, lateral surface structures can evolve, which haV‘?Cahn-HiIIiard equation [19]) reads

their origin in lateral surface modes (LSM) with wave vec-

tors parallel to the wall. The LSM are characterized by a i = TpyA[—op Ay + 1 ()], (1a)
specific dispersion relatiow (k) and amplitudes decay-

ing exponentially into the bulk. Both their dispersion rela-wherel,, is a (constant) bulk mobility angl, = df, /di.

tion and their decay lengths depend strongly on the surfaddo thermal noise current has been added on the right-hand
properties. In fact, depending on the type of surface mateside; i.e., we assume that the system can be treated within
rial, the formation of both SDW and lateral domain struc-the low noise limit (see, e.g., [20]). Equation (1a) has to
tures has been observed during spinodal decomposition bk supplemented by two boundary conditions &t 0 (for

a blend of deuterated polystyrene and poly(styrene-co-4= — <0 one has to recover the bulk behavior). The first one
bromostyrene) (PBBS) [5]. is simply the condition that no current can flow through the
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surface, are bulk modes, which are modified near the surface.
d[—opAy + 1)) = 0. (1b)  While for o > w,, only surface modes are possible, the
spectrum fore < w,, consists of both bulk and surface
odes, which will be discussed elsewhere [24].
Here we concentrate on the regime> w,,, where the
, surface modes are more unstable than any bulk mode.
Iplimo = ~Dil=0sbpih = 0309 + fi()]=o - One can show that a necessary condition for such a solu-
(16)  tion to exist isw /T’ < —g — dkj|, which requiresg <0.
I's defines a surface kinetic coefficientand the terpd. ¢4  For this type of LSM we then obtain two complex con-
is due to the surface contribution coming from the variationugate valuesk,, =y *+ ig, with 2!/2y = {(kﬁ —k2) +
S8 Fy[ ] of the bulk free energy [21]. Boundary conditions [(kﬁ — k22 + (0 — wy)]Y2/2 > 0and2!/2q ={—(kﬁ -
of §|m|I|ar form as 'E_qs:. _(1b) _and (1c) ha_ve also bee_nk’%)Jr[(kﬁ_k,%l)z + (0 — @,)]V2}/2.  The LSM can
derived from a semi-infinite Ising model with Kawasaki
spin exchange dynamics [11,22].

We now consider the system to be rapidly quenche
at time r = 0 from a high temperature well above the | T, + &skﬁ +g+y —q aj
coexistence curve to a low temperat/L/Jre inside the unstable -7, q) x+(q,7)
region of the miscibility gap wherg, () < 0. By i
we denote the homogeneous state before the quench adad x=(y.q) = ¥> — 3yq> = (kj — k2)y. Note that
define g, (z, 1) as the Fourier transform of the fluctuation the solubility condition of Eq. (3) leads to an implicit
d(p,z,1) = y(p,z,1) — o with respect to the lateral €quation for the dispersion relatian,(k;), asy and g
coordinatesp [23]. Periodic boundary conditions in depend onw and kj. After inserting @ = w,(kj) in
the lateral directions are imposed so that we can dedhe expressions foy, ¢, andn = a/a, derived above,
with discrete wave vectord;. By choosing the bulk theseé quantities become functions igf only. The ex-
correlation lengtré, = [/ f1 (41)]"/2 as the length unit  Plicit form of the LSM is thend; = cp exd o (k) —
and 7 = & /T, f1(y1) as the time unit, wherey, is  Y(ki)zlicodq(kyz] + n(ky)sinlg(ky)z];, wherecy, is de-
the equilibrium value corresponding to tierich phase, —termined by the initial condition.

Egs. (1a)—(1c) become after linearization AfS anfexample Wedchoq?%f(ogbr)the ;Y?Z()?jl}%(& t;U”( and
9+ (02 — k)02 + K2 — kD)]ds = 0, oq) Surface free energy densiti = fp » () =
[9, + (o2 2 ”><; ;= ki @)y Lyt and ) = FW)/EnfL) =~ +
d:[0; + ki = k||]z:0¢;;” =0, (2b) 5gs¢* at the final temperature after the quench, which
[[s'0, — o, + ookj + gl—odi, = hd;5.  (2¢)  divesh = hy — gy andg = g,. The resulting disper-

; _ I Y sion relationw, (k) is shown in Fig. 1 for fixed'y = 10,
ot et gy ey S Tl
critical wave numberk, = [— £1 (o), £l (41)]1/2 of the w(k)) displays a maximum at,, Iarggr thank,, = 1/2
bulk modes (fork < k. the bulk modes are unstable). Wit (ki) > w, = 1/16, while for o, = 0.5, w;(ky)
Equations (2a)—(2c) represent an inhomogeneous boun§as its maximum ak = 0. Accordingly, we expect the

ary value problem with the inhomogeneity only appear_appearance of surface domains with a lateral length scale,

ing for k; = 0, and the SDW (in the linear regime) can which for & % O.>25 is smaller than the bulk domain size
be regarded as the particular integral satisfying the initiaPUt larger forg, = 0.5.
condition qb,;uzo(z,O) = 0.

The homogeneous problem is solved by a separa-
tion ansatz, yielding modes of the formbz (z,1)= 150 L
e®'> ;aje % For givenw, Eq. (2a) determines four
possible values ok; by the conditionx; = kj — k2, =
i(0 — wy)"/?, where k,, = k.//2 and w,, = k* are =
the wave number and growth rate of the most unstable ‘éa
bulk mode, respectively. To obtain a physical solution
&,;H(z,t), we have to require;; = 0 if Re k; < 0. The 50 |

The second boundary condition may be derived by re
quiring that the system tends to minimize its surface fred"
energy,

now be written as ¢ (z,1) = [aic0dqz) + ay X
&in(qz)]6772+“”, wherea; anda; are determined by

>=o 3)

as

—_

boundary conditions (2b) and (2c) then constitute a ho-

mogeneous system of linear equations for the remaining \\

amplitudesa;. The condition for this system to have a 0.0 AN )

nontrivial solution yields the spectrum of allowed modes. 00 o5 10 45 20 25 30

Different types of modes can occur: Surface modes with L

Re k; >0 for all j yielding the LSM, as well as pure bulk FIG. 1. Surface dispersion relation, (k) of the LSM for
modes with Rex; =0 for all j. The remaining modes I’y = 10, g, = —4, and various values af,.
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Next we test these predictions of the linearized [ dkS,(z,7) of the lateral structure facto$y,(z,t) =
theory against numerical calculations for the discretizec{&,;”(z,t)(}g (z,t)) as a function ofz at the same time
nonlinear Egs. (1a)—(1c). For convenience these calcy-— (.5 and the same surface parameters as in Figs. 2(b)
lations are carried out for a two-dime_nsional _symmetricand 2(d) [---) denotes an average over many different
slab of sizeL, X L. =40&, X 80¢; (using a grid with jnjtial configurationsy(x, z,0)]. The inverse ~!(z,7)is a
32X 10° points). The widthL, is chosen sufficiently measure of the characteristic lateral domain size at position
large such that the surface structures emerging from the and times. The solid lines in the figure refer to the
two walls do not interfere. Periodic boundary conditionsnymerical results, while the dashed lines are calculated
are used in ther direction. The system is quenched from the linear theory presented above. Only the modes
at o =0 (critical quench) and the initial configuration \ith » > «,, have been included in the calculation, which
(x, z,0) right after the quench consists of uniformly dis- gominate the behavior for smajl As can be seen from
tribqted random quctuatipns of amplituele=l +0.01 [25]. Fig. 3, I(z,¢) exhibits oscillations for smalt < Iy gu,

Figure 2 shows domain structures obtained from the nuyhich are caused by the oscillatory behavior of the LSM
merical calculations fol, =0 and the same parameters as a function o and are reproduced by the linear theory
I's =10, g, =—4asin Fig. 1. The patterns in Figs. 2(a) to a good approximation [26]. For = I sm, I(z,1)
and 2(b) correspond 1@; = ( and to two progressive times approaches the valug, = 1/2, as expected in the bulk.
1=0.25andz = 0.5, while the analogous results f6t =5 (This behavior is not reproduced by the dashed line, since
are shown in Figs. 2(c) and 2(d). In all cases isotropiGye did not include the bulk modes in our calculation.)
structures in the bulk with domains of sizer/k,, = 12 It is clear that a good agreement between the calculated
separate anisotropic domain structures occurring near thghd simulated momentsz, r) can no longer be expected
walls, which are induced by the LSM. The typical lat- at |ater times due to the nonlinear terms in Egs. (1a)—(1c).
eral length scales are as expected from the dispersion rgy general, nonlinearities, thermal noise, and finite quench
lation discussed above: In Figs. 2(a) and 2(b) the lengthates limit the validity of the linearized theory [2]. As-
scales are shorter than in the bulk, while in Figs. 2(c) anduming an instantaneous quench, we can estimate a criti-
2(d) a different morphology of surface domains is seercg| timer,,, where the linear theory ceases to be valid, by
with lateral length scales larger than in the bulk. Alsocomparing the size of the nonlinear terms in Egs. (1a)—(1c)
the typical extension of surface domains in thelirec-  \jith the linear ones. In our case, where the order param-
tion differs from that of the bulk domains and is ap- eter at the surface grows faster than in the bulk, this yields
proximately given by2w/q(kj). (From the theory we ;< |InA/w,(ky,,)|, whereA denotes the amplitude of the
get2w/q(ky,) = 5.7 and 4.5 forg, = 0 and 5, respec- nitial order parameter fluctuations (see above). For the
tively, in good agreement with the patterns shown.) Theyarameters chosen in Fig. 2 we thus obtajn~ 7. We
LSM dominate the domain structure up to a distahg&  note thatr can become quite large in mixtures of poly-
from the walls, where the amplitude of the most unstablgners with high molecular weight, where the linear theory

LSM (~e@thm)=rkin):) hecomes comparable to that of may remain applicable up to times of order hours [27].
the most unstable bulk mode-(e®~’), yielding I sy =

[ws(kjjm) — @]t/ v(kym). Accordingly, with increasing
time the surface structures extend farther into the bulk, as
can be seen by comparing Figs. 2(a) and 2(gh{ = 3.4) 16+
with Figs. 2(b) and 2(d)/{.sm = 6.9), respectively. 14 b h
For a more quantitative analysis, we show in Fig. 3
the normalized first moment(z, 1) = [ dkykySk,(z, 1)/
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FIG. 3. Normalized first momerit(z, r) of the lateral structure
factor as a function of at fixedr = 0.5 for the same surface
parameters as in Fig. 2. The symbols mark the result from

FIG. 2. Domain structures after a critical quench for §g)= simulations of Egs. (1a)—(1c), and the solid line is drawn as a
0, t =025, (b)d,=0,r=0.5, (c)d, =5, t =025, and guide for the eye. Averages were performed over 10 different
(d) 5 =5, + = 0.5. Surface parameterE; = 10, g, = —4 initial configurationsy(x, z,0) and both walls of the slab. The
are chosen as in Fig. 1, antl = 0. Black areas refer to dashed lines indicate the results from the linear theory, where
¥ (x,z,t) > 0 and white areas tgh(x, z,¢) < 0. only the LSM withw; > w,, are taken into account.
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