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Paradoxal Diffusion in Chemical Space for Nearest-Neighbor Walks over Polymer Chains
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(Received 24 March 1997)

We consider random walks over polymer chains (modeled as simple random walks or self-avoiding
walks) and allow from each polymer site jumps to all Euclidean (not necessarily chemical) neighboring
sites. For frozen chain configurations the distribution of displacements (DD) of a walker along the
chain shows a paradoxal behavior: The DD’s width (interquartile distance) grows with time asL ~ ta,
with a ø 0.5, but the DD displays large power-law tails. For annealed configurations the DD is a
Lévy distribution and its width is strongly superdiffusive. [S0031-9007(97)03619-3]

PACS numbers: 61.41.+e, 05.40.+ j, 05.60.+w
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Random walks in random environments occur in man
fields of modern statistical physics and have won majo
attention in the last two decades; see Refs. [1–3]. Man
situations lead to random walks on random walks (RW
or on self-avoiding random walks (SAW), see Refs. [4
12]; in the polymer case such structures depict chains
u solvents (RW) or in good solvents (SAW). The prob
lem arises very naturally in the analysis of energy or ex
citon transport over polymer chains. For simplicity we
view a moving entity (say electron, exciton, or enzyme
which performs steps of lengtha from one neighboring
site (monomer) to another one. A triplet exciton, for in
stance, can move from one donor to another one close b
not necessarily sequentially placed along the chain. Hen
not only steps along the chain but also steps betwe
monomers which are close to each other in (Euclidea
space are involved, even if they are far apart in chemic
space (where the distancelch between two points is defined
through the number of monomersn between them along
the chain’s backbonelch ­ n 1 1). Viewed in terms of
the regular Euclidean distance some properties of ra
dom walks on SAW chains (e.g., the spectral dimensio
and the anomalous diffusion exponent) were evaluated
Refs. [4–12]. To our knowledge up to now, no particula
attention was paid to the corresponding properties from th
viewpoint of the chemical distance; here we show that th
viewpoint leads to highly unusual behaviors.

We start from the findings for frozen chain configura
tions in an experimentally relevant 3D situation, wher
we simulate nearest-neighbor random walks over RW an
over SAW chains embedded in a simple cubic lattice. W
first generate and save 100 chain configurations. The R
chains are generated as trajectories of a random walker
a simple cubic lattice, and their length isL ­ 30 000. The
SAW chains, of lengthL ­ 10 000, were obtained using
the pivot algorithm [13], as described in Ref. [14]. Each o
the different realizations was created from an independe
initial configuration to which the pivot transformation was
applied 2000 times. Then for each configuration we sta
the walk at a random position and check at each step ho
many moves are possible from the actual position of th
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walker. The moves allowed are jumps to all monomers
cupying nearest-neighbor positions (either along the ch
or across it) and (for the simple RW chain) also to oth
monomers occupying the same site. The next step of
walk is chosen at random, with equal probability, from th
set of allowed moves, and the value of time is increa
by 1. Note that in this way large jumps (in terms of th
chemical distance) occur. We then analyze the DDs of
random walker after timet, by averaging over 100 differ
ent chain configurations, over each of which 10 000 r
dom walk realizations are performed.

The DD is given by the probability densityPsl, td of the
(chemical) displacementl of a random walker at timet.
The DDs are evidently symmetric, and we first character
them by their width, determined through the interquart
distanceL ­ Q3y4 2 Q1y4. The time dependence of thi
width is shown in Fig. 1, where values ofL determined
at different times are plotted on double logarithmic sca
From Fig. 1 it is evident that both for the RW and for th
SAW chainsL follows a power law,Lstd ~ ta ; herea

FIG. 1. Time dependence of the distribution’s widthLstd for
random walks over RW chains (empty circles) and over SA
chains (full circles). Note the double logarithmic scales. T
full line has the slope 0.499, the dashed line the slope 0.49
© 1997 The American Physical Society 857
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obtained by linear regression isa ­ 0.499 6 0.005 for
the RW case anda ­ 0.49 6 0.02 for the SAW case.
This may suggest that at1y2 dependence ofLstd is exact.

As we proceed to show, the DDs scale well withLstd;
on the other hand, the form of the DDs is not Gaussia
and shows long (power-law) tails. In Fig. 2 we displa
on double logarithmic scales the DDs for RW over RW
chains for three different times. Plotted is the value o
rsjd ­ Lstd fPsl, td 1 Ps2l, tdg (the distribution of the
absolute value of the displacement) vsj ­ jljyLstd for
t ­ 50, 500, and 5000. The results fall on a master curv
both for the smallx, flat part of the function and for the
largex regime. Moreover, the large-j regime suggests for
l . L a power-law behaviorPsl, td ~ l2x; from a least-
squares fit we obtainx ø 1.5. With this x value the DD
lacks even its first moment. Comparison of the DD wit
a Lévy-stable law with the same width and power-law ta
behavior shows that these two distributions differ strongl

Figure 3 shows similar results for the case of RW
over SAW chains at three different times,t ­ 100, 500,
and 6000. We again find that the DD scales withLstd.
However, now the behavior of the DD is somewhat mo
complex than for RW chains: the power-law tail (if any
starts only at large values ofl, such thatl ¿ L; here
the statistical fluctuations (and also finite-size effect
begin to be important. Assuming that forl . 3L the
distributionPsl; td goes asl2x we findx to lie between 2.6
and 2.9. In any casex is less than 3 and the distribution
lacks its second moment. As for RW chains, the form o
the DD for SAW chains differs from a Lévy distribution.

We now turn to the theoretical analysis of our findings
The overall behavior of the walk is connected to the prob
bility distribution of the jump lengths. This distribution is
the probabilitypsld to find two monomers separated by
the chemical distancel in ana-vicinity of each other (see,

FIG. 2. Shown is the rescaled DDrsjd as a function of the
scaling distancej ­ jljyLstd for random walks on a RW chain
(see text for details). Note the double logarithmic scales.
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e.g., Refs. [15–17] for a detailed analysis of the problem
In both cases, for RW and for SAW chains in 3D the
distributionspsld show power-law tails,psld ~ l2z ; we
note, however, that the exponentsz of these power laws
are quite different.

For a Gaussian chain the probability of the monome
to be in ana vicinity is

psld ~ l23y2, (1)

so thatzRW ­ 3y2 and the first (anda fortiori the second)
moment of the corresponding distribution does not exis
The behavior ofpsld for the case of SAW chains is
different, due to the excluded-volume interaction betwee
different parts of the chain; see Ref. [16]. In the case
an extremely large SAW chain one has

psld ~ l2nsd1u2d, (2)

where the Flory exponent isn ø 0.588, . . . [14–16] and
the numerical value ofu2 is not known accurately. Our
numerical evaluation ofpsld for SAW chains givespsld ~

l22.2 (i.e., zSAW ­ 2.2), leading to the estimateu2 ­
0.74 6 0.03 (for 5 , l , 300) which agrees very well
with the results reported in Ref. [17].

Neglecting the correlations between subsequent ste
one finds according to Lévy’s limit theorem that the DD
[being the distributions of sums of independent rando
quantities drawn out from the same probability distribu
tion psld ~ l2z ] converge to a stable Lévy distribution of
indexg ­ z 2 1, Refs. [1,18,19]. Because of the overal
symmetry of the problem, the corresponding distributio
must be symmetric and has its median value equal to ze
i.e., it is given by the characteristic function

fskd ­ exps2Ajkjz21d . (3)

FIG. 3. Same as in Fig. 2, now for a SAW chain.
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In Eq. (3) the parameterA characterizes the width of the
distribution. For RW chains the corresponding distribu
tion probability density

ps yd ­
1

2p

Z `

2`
fskde2ikx dk

­
1
p

Z `

0
exps2A

p
k d cosky dk (4)

can be expressed analytically in terms of the Fresn
integralsCszd andSszd; see Ref. [20],

ps yd ­
1

p
2p

Aj yj23y2

Ω
cos

µ
pz2

2

∂ ∑
1
2

2 Cszd
∏

1 sin

µ
pz2

2

∂ ∑
1
2

2 Sszd
∏æ

,

(5)

with z ­ A2y
p

2py. The distribution, Eq. (4) does not
possess any moments; the positions of the lower quar
Q1y4 and of the upper quartileQ3y4 of the distribution
correspond to61.28A2.

Note that according to Lévy statistics the value ofA is
proportional to the number of steps, i.e., to the timeA ~ t.
The overall distributionPsl; td scales then with time as

Psl; td ~ t21ysz 21dPz slt21ysz21dd , (6)

where Pz is a universal, time-independent function
Therefore one has

L ­ Q3y4 2 Q1y4 ~ t1ysz21d, (7)

leading to a dependence ofL ~ t2 for walks over RW
chains: The characteristic chemical displacement of t
walker should grow strongly superdiffusively. This resu
contradicts our numerical findings and suggests that c
relations between subsequent steps cannot be neglec
According to Eq. (7)Lstd for a SAW chain should grow
as L ~ t0.8, once more in clear contradiction to the nu
merical findings. These facts witness in favor of stron
correlations between the steps. Note that this behavior
a consequence of the three-dimensional nature of the s
tem: ind $ 4 SAW and RW have very similar properties
a fact due to the relatively small number of contacts com
pared to the total number of sites. Therefore the number
jumps over large chemical distances is small, and a scal
law L ~ ta with a ­ 0.5 is expected.

In Euclidean space the polymer chain is a rather loo
fractal, resembling to some extent a percolative structu
Ref. [21]. The overall number of sites between whic
jumps are possible and therefore the number of differe
steps’ lengths grows with time much slower thann. For
example, the mean number of distinct sites visited,Sstd
grows asSstd ~ tDsy2. We find Ds ­ 1.3 6 0.15 for a
RW chain andDs ­ 1.02 6 0.08 for a SAW chain; see
Fig. 4. HereDs is the spectral dimension of the structure
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FIG. 4. Time dependence of the mean numberSstd of distinct
sites visited for random walks over RW chains (empty
circles) and over SAW chains (full circles), plotted on double
logarithmic scales. The full line has the slope 0.64, the dashe
line the slope 0.51; these values correspond to the spect
dimensionsDs ­ 1.28 andDs ­ 1.02, respectively.

Ds , 2. Note that the value ofDs for SAW structures in
3D is very near to that for 2D SAWs, namely,Ds is around
unity (see Refs. [6,8,11]); the value is considerably smalle
than predicted theoretically,Ds ­ 1.69, in Ref. [8]. The
reason for this is that due to the evident geometrica
constraints, the lengths of different steps connecting th
neighboring sites are correlated, so that the number
different independentstep lengths grows even slower than
Sstd, leading to the peculiar behavior found here.

To show that these numerically established behavio
are really a consequence of strong geometrical correlatio
we simulate “annealed” chains, in which we purposel
neglect such correlations. For this we take the distributio
of step lengths which we obtain from our simulations o
frozen chains and compute the DD as a sum ofn such
steps, independently distributed. The results confirm th
in this case the behavior is indeed superdiffusive: The DD
obtained scale exactly as predicted by Eq. (6).

In summary, we have numerically investigated random
walks on polymer chains, where the walker can make ste
from each site to its nearest neighbors in 3D. In the cas
of frozen chains we have found that the width of the
walker’s DD grows asL ~ ta , with the exponenta being
close to 1

2 and, moreover, that the DD scales with its
width. On the other hand, the DDs show fat tails and
lack the first (for RW chains) or the second (for SAW
chains) moments. This paradoxal, diffusivesa ø 1

2 d,
behavior is related to the strong correlations between th
lengths of subsequent jumps in chemical space. In th
case of annealed chains such random walks lead to Lé
flights and to a strongly superdiffusive behavior. The
extreme differences between these two cases show th
859
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transport processes on polymer chains are very sensit
to the interplay between the individual transfer steps an
structural changes. Thus for random walkers which mov
very fast, the chain appears frozen, whereas an annea
situation is encountered if the walkers’ motion is slow
compared to the conformational changes of the chain. T
effect could manifest itself through a strong dependen
of the kinetics of luminescence on the solvent’s viscosit
Monitoring transport phenomena in polymers provide
thus a macroscopic means to assess the intrinsic molecu
dynamics.
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