VOLUME 79, NUMBER 5 PHYSICAL REVIEW LETTERS 4 AGUST 1997

Paradoxal Diffusion in Chemical Space for Nearest-Neighbor Walks over Polymer Chains
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We consider random walks over polymer chains (modeled as simple random walks or self-avoiding
walks) and allow from each polymer site jumps to all Euclidean (not necessarily chemical) neighboring
sites. For frozen chain configurations the distribution of displacements (DD) of a walker along the
chain shows a paradoxal behavior: The DD’s width (interquartile distance) grows with tihe<as®,
with @ = 0.5, but the DD displays large power-law tails. For annealed configurations the DD is a
Lévy distribution and its width is strongly superdiffusive. =~ [S0031-9007(97)03619-3]

PACS numbers: 61.41.+e, 05.40.+j, 05.60.+w

Random walks in random environments occur in manywalker. The moves allowed are jumps to all monomers oc-
fields of modern statistical physics and have won majocupying nearest-neighbor positions (either along the chain
attention in the last two decades; see Refs. [1-3]. Manyr across it) and (for the simple RW chain) also to other
situations lead to random walks on random walks (RW)monomers occupying the same site. The next step of the
or on self-avoiding random walks (SAW), see Refs. [4—walk is chosen at random, with equal probability, from this
12]; in the polymer case such structures depict chains iset of allowed moves, and the value of time is increased
0 solvents (RW) or in good solvents (SAW). The prob-by 1. Note that in this way large jumps (in terms of the
lem arises very naturally in the analysis of energy or exchemical distance) occur. We then analyze the DDs of the
citon transport over polymer chains. For simplicity we random walker after timg by averaging over 100 differ-
view a moving entity (say electron, exciton, or enzyme)ent chain configurations, over each of which 10000 ran-
which performs steps of length from one neighboring dom walk realizations are performed.
site (monomer) to another one. A triplet exciton, for in- The DD is given by the probability densiB(/, r) of the
stance, can move from one donor to another one close byghemical) displacementof a random walker at timé
not necessarily sequentially placed along the chain. Hencthe DDs are evidently symmetric, and we first characterize
not only steps along the chain but also steps betweethem by their width, determined through the interquartile
monomers which are close to each other in (EuclideanflistanceA = Q3,4 — Q;/4. The time dependence of this
space are involved, even if they are far apart in chemicalidth is shown in Fig. 1, where values df determined
space (where the distankg between two points is defined at different times are plotted on double logarithmic scales.
through the number of monomensbetween them along From Fig. 1 it is evident that both for the RW and for the
the chain’s backbong;, = n + 1). Viewed in terms of SAW chainsA follows a power law,A(¢) « t*; herea
the regular Euclidean distance some properties of ran-
dom walks on SAW chains (e.g., the spectral dimension T . T
and the anomalous diffusion exponent) were evaluated in
Refs. [4—12]. To our knowledge up to now, no particular
attention was paid to the corresponding properties from the
viewpoint of the chemical distance; here we show that this
viewpoint leads to highly unusual behaviors.

We start from the findings for frozen chain configura-
tions in an experimentally relevant 3D situation, where
we simulate nearest-neighbor random walks over RW and
over SAW chains embedded in a simple cubic lattice. We
first generate and save 100 chain configurations. The RW
chains are generated as trajectories of a random walker on
a simple cubic lattice, and their lengthZis= 30000. The . ! .
SAW chains, of lengti. = 10000, were obtained using 102 108 10*
the pivot algorithm [13], as described in Ref. [14]. Each of
the different realizations was created from an independent t
initial configuration to which the pivot transformation was IG. 1. Time dependence of the distribution’s widfr) for

applied 2000 times. Then for each configuration we start,,4om walks over RW chains (empty circles) and over SAW

the walk at a random position and check at each step hoghains (full circles). Note the double logarithmic scales. The
many moves are possible from the actual position of théull line has the slope 0.499, the dashed line the slope 0.490.
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obtained by linear regression i = 0.499 = 0.005 for  e.g., Refs. [15-17] for a detailed analysis of the problem).
the RW case andv = 0.49 = 0.02 for the SAW case. In both cases, for RW and for SAW chains in 3D the
This may suggest thata/? dependence oh(r) is exact.  distributions p(I) show power-law tailsp(l) « [~¢; we
As we proceed to show, the DDs scale well witkz);  note, however, that the exponertof these power laws
on the other hand, the form of the DDs is not Gaussiarare quite different.
and shows long (power-law) tails. In Fig. 2 we display For a Gaussian chain the probability of the monomers
on double logarithmic scales the DDs for RW over RWto be in ana vicinity is
chains for three different times. Plotted is the value of
p(&) = A(1)[P(l,1) + P(—1,1)] (the distribution of the p(l) < 17372, (1)
absolute value of the displacement) §s= |I|/A(z) for
t = 50, 500, and 5000. The results fall on a master curveso that/rw = 3/2 and the first (ana fortiori the second)
both for the smalk, flat part of the function and for the moment of the corresponding distribution does not exist.
largex regime. Moreover, the largé+egime suggests for The behavior ofp(l) for the case of SAW chains is
I > A a power-law behavioP(l, ) = [*; from a least- different, due to the excluded-volume interaction between
squares fit we obtaim =~ 1.5. With thisx value the DD  different parts of the chain; see Ref. [16]. In the case of
lacks even its first moment. Comparison of the DD withan extremely large SAW chain one has
a Lévy-stable law with the same width and power-law tail
behavior shows that these two distributions differ strongly. p(l) = [Trd+0) (2)
Figure 3 shows similar results for the case of RW
over SAW chains at three different times= 100, 500, where the Flory exponent iB8 =~ (0.588,... [14_]_6] and

and 6000. We again find that the DD scales whtr).  the numerical value o, is not known accurately. Our
However, now the behavior of the DD is somewhat morenumerical evaluation of() for SAW chains giveg (I) o
complex than for RW chains: the power-law tail (if any) /=22 (j.e., fsaw = 2.2), leading to the estimat®, =

starts only at large values df such thatl > A; here (.74 + 0.03 (for 5 < I < 300) which agrees very well
the statistical fluctuations (and also finite-size effects)yith the results reported in Ref. [17].

begin to be important. Assuming that for> 3A the Neglecting the correlations between subsequent steps,
distributionP(/; 1) goes ag™* we findx to lie between 2.6  one finds according to Lévy’s limit theorem that the DDs

and 2.9. In any casris less than 3 and the distribution [peing the distributions of sums of independent random
lacks its second moment. As for RW chains, the form ofquantities drawn out from the same probability distribu-

the DD for SAW chains differs from a Lévy distribution. tjon p(l) « 1=¢] converge to a stable Lévy distribution of
We now turn to the theoretical analysis of our findings.indexy = ¢ — 1, Refs. [1,18,19]. Because of the overall

The overall behavior of the walk is connected to the prObasymmetry of the problem, the corresponding distribution

bility distribution of the jump lengths. This distribution is must be symmetric and has its median value equal to zero;

the probability p(/) to find two monomers separated by j.e, it is given by the characteristic function
the chemical distancein ana-vicinity of each other (see,

flk) = exp(—Alk|*™"). 3)
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FIG. 2. Shown is the rescaled Dp(¢) as a function of the |Og E
scaling distancg = |/|/A(¢) for random walks on a RW chain
(see text for details). Note the double logarithmic scales. FIG. 3. Same as in Fig. 2, now for a SAW chain.
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In Eq. (3) the parametek characterizes the width of the 10°
distribution. For RW chains the corresponding distribu-
tion probability density

) = o [ rwe

N

1 [~ — o102
= — | exp(—AVk)cosky dk (4) ~—
7 Jo )

can be expressed analytically in terms of the Fresnel
integralsC(z) andS(z); see Ref. [20],
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) 5 o FIG. 4. Time dependence of the mean numf¥g)y of distinct
with z = A*/\/27y. The distribution, Eq. (4) does not sites visited for random walks over RW chains (empty
possess any moments; the positions of the lower quartileircles) and over SAW chains (full circles), plotted on double
Q174 and of the upper quartilgs,, of the distribution logarithmic scales. The full line has the slope 0.64, the dashed
correspond ta-1.2842 ) line the slope 0.51; these values correspond to the spectral

p e , . dimensionsD; = 1.28 andD,; = 1.02, respectively.
Note that according to Lévy statistics the valuefois

proportional to the number of steps, i.e., to the tine 1.
The overall distributionP(/; ¢r) scales then with time as D, < 2. Note that the value ab, for SAW structures in
—1(e— —1(¢— 3D is very near to that for 2D SAWSs, namel; is around
P(Ls1) = 11 I)Pf(lt e, 6) unity (see Refs. [6,8,11]); the value is considerably smaller
than predicted theoreticallyp, = 1.69, in Ref. [8]. The
reason for this is that due to the evident geometrical
constraints, the lengths of different steps connecting the
A= Qs — Qg = e ) neighboring sites are correlated, so that the number of
differentindependenstep lengths grows even slower than
leading to a dependence df « 12 for walks over RW  S(#), leading to the peculiar behavior found here.
chains: The characteristic chemical displacement of the To show that these numerically established behaviors
walker should grow strongly superdiffusively. This resultare really a consequence of strong geometrical correlations
contradicts our numerical findings and suggests that cowe simulate “annealed” chains, in which we purposely
relations between Subsequent steps cannot be neg|ecté@_g|ect such correlations. For this we take the distribution
According to Eq. (7)A(r) for a SAW chain should grow Of step lengths which we obtain from our simulations of
as A « 198, once more in clear contradiction to the nu-frozen chains and compute the DD as a surmafuch
merical findings. These facts witness in favor of strongsteps, independently distributed. The results confirm that
correlations between the steps. Note that this behavior i this case the behavior is indeed superdiffusive: The DDs
a consequence of the three-dimensional nature of the sygbtained scale exactly as predicted by Eq. (6).
tem: ind = 4 SAW and RW have very similar properties, ~In summary, we have numerically investigated random
a fact due to the relatively small number of contacts comwalks on polymer chains, where the walker can make steps
pared to the total number of sites. Therefore the number dfom each site to its nearest neighbors in 3D. In the case
jumps over large chemical distances is small, and a scalingf frozen chains we have found that the width of the
law A o« t* with @ = 0.5 is expected. walker's DD grows as\ « t*, with the exponent being
In Euclidean space the polymer chain is a rather looselose to% and, moreover, that the DD scales with its
fractal, resembling to some extent a percolative structureyidth. On the other hand, the DDs show fat tails and
Ref. [21]. The overall number of sites between whichlack the first (for RW chains) or the second (for SAW
jumps are possible and therefore the number of differenthains) moments. This paradoxal, diffusive = % ,
steps’ lengths grows with time much slower than For  behavior is related to the strong correlations between the
example, the mean number of distinct sites visited) lengths of subsequent jumps in chemical space. In the
grows asS(¢) « t?/2. We find D, = 1.3 = 0.15 for a  case of annealed chains such random walks lead to Lévy
RW chain andD; = 1.02 = 0.08 for a SAW chain; see flights and to a strongly superdiffusive behavior. The
Fig. 4. HereD; is the spectral dimension of the structure, extreme differences between these two cases show that

where P, is a universal, time-independent function.
Therefore one has
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