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Periodic Orbit Quantization by Harmonic Inversion of Gutzwiller's Recurrence Function
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Semiclassical eigenenergies and resonances are obtained from classical periodic orbits by harmonic
inversion of Gutzwiller's semiclassical recurrence function, i.e., the trace of the propagator.
Applications to the chaotic three disk scattering system and, as a mathematical model, to the Riemann
zeta function demonstrate the power of the technique. The method does not depend on the existence of
a symbolic code and might be a tool for a semiclassical quantization of systems with nonhyperbolic or
mixed regular-chaotic dynamics as well. [S0031-9007(97)03694-6]

PACS numbers: 05.45.+b, 03.65.Sq

Since the development gberiodic orbit theoryby information given by the Maslov index) of periodic orbit
Gutzwiller [1,2] it has become a question as to how in-contributions. Equation (1) is also valid for integrable
dividual semiclassical eigenenergies and resonances cf8] and near-integrable [9] systems, but with different
be obtained from periodic orbit quantization for classicallyexpressions for the amplitudes,,. The eigenenergies
chaotic systems. A major problem is the exponential proand resonances are the poles of the response function, but
liferation of the number of periodic orbits with increasing unfortunately, its semiclassical approximation (1) does not
period, resulting in a divergence of Gutzwiller’'s trace for- converge in the region of the poles; thus the problem is the
mula at real energies and below the real axis where thanalytic continuation of*(E) to this region.
poles of Green’s function are located. As a consequence, In the following we assume that the classical system
in a direct summation of periodic orbit contributions, has a scaling property; i.e., the shape of periodic orbits
smoothing techniques must be applied, resulting in lowdoes not depend on the scaling parameier,and the
resolution spectra for the density of states [3]. To extractlassical action scales 8s, = wsp,. Examples of scaling
individual eigenstates, the semiclassical trace formula hasystems are billiards, Hamiltonians with homogeneous
to be analytically continued to the region of the quantumpotentials, Coulomb systems, or the hydrogen atom in
poles. This can be achieved by reformulating the eigenexternal magnetic and electric fields. Quantization yields
value problem as finding the zeros of a dynamical zetdound states or resonances, for the scaling parameter.
function, i.e., an infinite product over entries from classi-For scaling systems the semiclassical response function
cal cycles and by analytic continuation of the Euler prod-g**(w) can be Fourier transformed easily to obtain the
uct applyingcycle expansiotechniques [4—7]. However, semiclassical trace of the propagator
the cycle expansion requires the existence and knowledge 1 +oo
of a symbolic code for the periodic orbits and is therefore C*¥(s) = — ] g (w)e ™ dw
restricted to a small class of systems. In particular, it is 21 J =
a nontrivial task to apply this concept to systems with a
mixed regular-chaotic classical dynamics. = D Apod(s = spo)- )

In this Letter we present a new technique for periodic po
orbit quantization based on ti@rmonic inversiorof the ~ The signalC*(s) has é peaks at the positions of the
semiclassical trace formula for the propagator, which is th&lassical recurrences = s, of periodic orbits and with
Fourier transform of the semiclassical response functiorpeak heights (recurrence strengths),; i.e., C¥(s) is
The method requires only the knowledge of all orbits upGutzwiller's periodic orbit recurrence function. Consider
to a sufficiently long but finite period and does not relynow the quantum mechanical counterpartgt{w) and
on, e.g., the existence of a symbolic code for the orbitsC*(w) taken as the sums over the pobes of Green’s
It may therefore be applied in general to a large variety ofunction,

systems with an underlying chaotic, mixed, or even regular d

. . m k
classical dynamics. g™ (w) = > P———— 3)

Following Gutzwiller [1,2] the semiclassical response KW Wk T e
function for chaotic systems is given by 1 +oo _ ,
A cim(s) = Py f g (w)e W dw = —iz dre ™,
g (E) = g (E) + > Apoe™r, 1) T k

po (4)

where gy (E) is a smooth function and the,, and A, with d; being the multiplicities of resonances, i.&,= 1
are the classical actions and weights (including phaséor nondegenerate states. Extraction of the frequencies,
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wk, and amplitudesd,, from the signalCi™(s) defined
on a finite segment is known darmonic inversiorwith
a large variety of applications in various fields [10]. Re-

a chosen frequency interval. The convergedand d;
should not depend om. This condition allows one to iden-
tify spurious or nonconverged frequencies by comparing

cently the method was applied to analyze quantum spectthe results with different values gf (e.g., withp = 1 and

by fitting them to the functional form of Gutzwiller’s trace
formula[11]. Itis the main issue of this Letter to show that
this procedure can be reverted asainiclassicatigenval-

p = 2). In periodic orbit quantization the amplitudés
are the multiplicities of semiclassical resonances and also
allow one to check the convergence of the calculations.

ues and resonances can be extracted by fitting GutzwillerBigenvalues with amplitudes, close to 1 are assumed

semiclassical periodic orbit recurrence siga&l(s) to the

to be well-converged nondegenerate states. The knowl-

functional form of Eq. (4). This means that the method ofedge of the operatdy (or ) itself is not required as for a
harmonic inversion can be successfully applied for periproperly chosen basis its matrix representatibf can be

odic orbit quantization. The frequencies;, obtained by
harmonic inversion of*°(s) are the semiclassical approxi-
mation to the poles of Green’s function in (3).

expressed only in terms of,. The advantage of the filter-
diagonalization procedure is its numerical stability with re-
spect to both the length and complexity (the number and

The harmonic inversion problem can be formulated as aensity of the contributing frequencies) of the signal. Here

nonlinear fit (see, e.g., Ref. [10]) of the sigi&ls) defined
on an equidistant grid,
Cn EC(nT)=dee_i"TWk, n=20,1,2,....,N,
k

(5)

we apply the method of Ref. [13] which is an improvement
of the filter-diagonalization method of Ref. [12] in that it
allows one to significantly reduce the required length of
the signal.

Note that the diagonalization of small matrices in (7)
does not imply that the results of periodic orbit quantiza-

with the set of generally complex variational parame-tion are more “quantum” in any sense than those obtained,

ters{wy, dr}. [In this context the discrete Fourier trans-
form scheme would correspond to a linear fit with
amplitudesd; and fixed real frequencies, = 27k/N,
k= 1,2,...,N. The latter implies the so-called “uncer-
tainty principle”; i.e., the resolution, defined by the Fourier
grid spacingAw, is inversely proportional to the length,
smax = N7, of the signal C(s).] The “high resolution”
property associated with Eq. (5) is due to the fact that ther
is no restriction for the closeness of the frequeneigss

e.g., froma cycle expansion. The eigenvalues are solutions
of nonlinear equations, and the diagonalization is equiva-
lent to the search for zeros of the dynamical zeta function
in the cycle expansion technique. Numerical calculation
of the zeros is also a nonlinear problem, and in contrast
to the matrix diagonalizations there might be a problem of
missing roots.

e As afirst example we now apply the method of harmonic
inversion to the three disk scattering problem which has

they are variational parameters. In Ref. [12] it was showrserved as a model system for periodic orbit quantization in

how this nonlinear fit problem can be recasted as a lin

many investigations during recent years [4,14—-16]. The

ear algebra one using the filter-diagonalization proceduraadius of the disks is normalized #® = 1, and the sys-

The crucial idea was to associate the signhalvith an au-
tocorrelation function of a suitable dynamical system,

e = (Dole 2| Dy), (6)

with the effective complex symmetric Hamiltoniafl
whose eigenvalues are the frequencieg, of interest.
(-+-|-++) corresponds to the complex symmetric inner
product (i.e., no complex conjugation). The “initial state”
d, is defined implicitly by identifying the amplitudes;
with the overlapg®,|®,)* of ®, with the eigenvectors,
o, of (). This establishes an equivalence between th
problem of extracting spectral information from the signal
with the one of diagonalizing the evolution operator=
¢~'™2 (or the Hamiltonian()) of the fictitious underlying
dynamical system. The filter-diagonalization method
then used for extracting the eigenvalues @f in any
chosen small energy window. Operationally this is don
by solving the small generalized eigenvalue problem,

(7)

whose eigenvalues; = exgd —iprw] and eigenvectors
B, yield the frequencies/; with their amplitudesd; for

826
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tem is characterized by the distanédetween the disks.

In billiards the scaled action is given by the length.

of orbits (s = L), and the quantized parameter is the ab-

solute value of the wave vectér= |k| = «/2mE/h. In

Fig. 1 we presentresults far= 6. Figure 1(a) shows the

trace of the semiclassical propagat@f(L). The groups

with oscillating sign belong to periodic orbits with differ-

ent cycle lengths in the symbolic code of Cvitariogied

Eckhardt [4]. To obtain a smooth function on an equidis-

tant grid, required for our harmonic inversion method, the
functions in (2) are convoluted with a Gaussian func-

ion. This does not change the underlying spectrum. The

result of the high resolution spectral analysis of this signal

is shown in Fig. 1(b). The crosses represent semiclassi-

cal poles for which the amplitudeg, are very close to

d; = 1, mostly within one percent. Because the ampli-

tudes converge much slower than the frequencies, these

Sesonance positions are assumed to be very accurate within

the semiclassical approximation. In fact, a perfect agree-
ment to many significant digits is achieved for these poles
with the results obtained by cycle expansion [16]. For the
diamonds the amplitudes deviate frafp = 1 within 5%

to maximal 50%. Figure 2 presents results for a shorter
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FIG. 1. Three disk scattering system, (subspace) witlk =  FIG. 2. Same as Fig. 1 but with separation raRo: d =
1,d = 6. (a) C(L), trace of the semiclassical propagator. Thel : 2.5 and convolution ofC*(L) with a Gaussian function of
signal has been convoluted with a Gaussian function of widtiwidth o = 0.0003.
o = 0.0015. (b) Semiclassical resonances. The resonance
positions marked by diamonds might be less accurate (see text).
we obtained about 80 zeros converged to 6 digit precision

_ . from a signal withsy,, = In(1000) = 6.91 (168 prime
distanced = 2.5 between the disks. For largegroups npumbers) and about 2500 zeros converged to 12 digits
of orbits with the same cycle length of the symbolic codefrom a signal Withsy.x, = In(10%) = 13.82 (78498 prime
strongly overlap and cannot be recognized in Fig. 2(a). Ihumbers). Note that these results have been obtained
this case the convergence of the conventional cycle eXdirectly from analyzing the signal (8) without using
pansion is rather slow because the semiclassical Selbefge functional equation for the Riemann-Siegel formula
zeta function has poles [15]. The total number of con{17,18]. In general, the number of frequencies (here
verged semiclassical resonances obtained &t 2.5 iS  Riemann zeros) which can be converged depends on the
small compared to the scattering system with= 6 be- length of the signal. The required signal lengttay,
cause the length of the signal is by a factor of 7 shortefor harmonic inversion is related to the average density of
than that in Fig. 1(a). More resonances at highgalues frequenciesg (w), by smax ~ 470 (w). More details will
might be obtained from a longer signal. be given elsewhere [19].

_ As asecond example we apply the method of harmonic | conclusion, we have introduced harmonic inversion
inversion to the famous Riemann zeta function [17]. Asas a new and general tool for semiclassical periodic orbit
pointed out by Berry [18], the density of zeros of the zetaguantization and finding the roots of dynamical zeta func-
function {(z) along the linez = 5 — iw can be written tions. The method requires the complete set of periodic
in formal analogy to Gutzwiller's trace formula (1) as a orbits up to a given maximum period as input, but does not
nonconvergent series with, , = wmIn(p) andA,,, =  depend on special properties of the orbits, as, e.g., the exis-
iIn(p)/p™?. Here the “periodic orbits” are the prime tence of a symbolic code or a functional equation. There-
numbers,p, andm = 1,2,... formally counts the “repe- fore, the method might also be a tool for the semiclassical
titions.” Applying our method of harmonic inversion to quantization of systems with mixed regular-chaotic clas-

the signal sical dynamics, which still is a challenging and unsolved
“ In(p) problem. The signal*°(s) can be composed as the sum

C(s) = iz Z ,’52 S[s — mIn(p)], (8) ofasignalrelated to the irregular part of the classical phase
p m=1 P space with periodic orbit amplitudes given by Gutzwiller's
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