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Periodic Orbit Quantization by Harmonic Inversion of Gutzwiller’s Recurrence Function
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Semiclassical eigenenergies and resonances are obtained from classical periodic orbits by harmonic
inversion of Gutzwiller’s semiclassical recurrence function, i.e., the trace of the propagator.
Applications to the chaotic three disk scattering system and, as a mathematical model, to the Riemann
zeta function demonstrate the power of the technique. The method does not depend on the existence of
a symbolic code and might be a tool for a semiclassical quantization of systems with nonhyperbolic or
mixed regular-chaotic dynamics as well. [S0031-9007(97)03694-6]
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Since the development ofperiodic orbit theory by
Gutzwiller [1,2] it has become a question as to how in
dividual semiclassical eigenenergies and resonances
be obtained from periodic orbit quantization for classical
chaotic systems. A major problem is the exponential pr
liferation of the number of periodic orbits with increasing
period, resulting in a divergence of Gutzwiller’s trace for
mula at real energies and below the real axis where t
poles of Green’s function are located. As a consequen
in a direct summation of periodic orbit contributions
smoothing techniques must be applied, resulting in lo
resolution spectra for the density of states [3]. To extra
individual eigenstates, the semiclassical trace formula h
to be analytically continued to the region of the quantu
poles. This can be achieved by reformulating the eige
value problem as finding the zeros of a dynamical ze
function, i.e., an infinite product over entries from class
cal cycles and by analytic continuation of the Euler prod
uct applyingcycle expansiontechniques [4–7]. However,
the cycle expansion requires the existence and knowled
of a symbolic code for the periodic orbits and is therefor
restricted to a small class of systems. In particular, it
a nontrivial task to apply this concept to systems with
mixed regular-chaotic classical dynamics.

In this Letter we present a new technique for period
orbit quantization based on theharmonic inversionof the
semiclassical trace formula for the propagator, which is t
Fourier transform of the semiclassical response functio
The method requires only the knowledge of all orbits u
to a sufficiently long but finite period and does not rel
on, e.g., the existence of a symbolic code for the orbi
It may therefore be applied in general to a large variety
systems with an underlying chaotic, mixed, or even regul
classical dynamics.

Following Gutzwiller [1,2] the semiclassical respons
function for chaotic systems is given by

gscsEd ­ gsc
0 sEd 1

X
po

ApoeiSpo , (1)

wheregsc
0 sEd is a smooth function and theSpo and Apo

are the classical actions and weights (including pha
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information given by the Maslov index) of periodic orb
contributions. Equation (1) is also valid for integrab
[8] and near-integrable [9] systems, but with differe
expressions for the amplitudesApo. The eigenenergies
and resonances are the poles of the response function
unfortunately, its semiclassical approximation (1) does
converge in the region of the poles; thus the problem is
analytic continuation ofgscsEd to this region.

In the following we assume that the classical syste
has a scaling property; i.e., the shape of periodic orb
does not depend on the scaling parameter,w, and the
classical action scales asSpo ­ wspo. Examples of scaling
systems are billiards, Hamiltonians with homogeneo
potentials, Coulomb systems, or the hydrogen atom
external magnetic and electric fields. Quantization yie
bound states or resonances,wk, for the scaling parameter
For scaling systems the semiclassical response func
gscswd can be Fourier transformed easily to obtain t
semiclassical trace of the propagator

Cscssd ­
1

2p

Z 1`

2`
gscswde2isw dw

­
X
po

Apodss 2 spod . (2)

The signalCscssd has d peaks at the positions of th
classical recurrencess ­ spo of periodic orbits and with
peak heights (recurrence strengths)Apo; i.e., Cscssd is
Gutzwiller’s periodic orbit recurrence function. Consid
now the quantum mechanical counterparts ofgscswd and
Cscswd taken as the sums over the poleswk of Green’s
function,

gqmswd ­
X

k

dk

w 2 wk 1 ie
, (3)

Cqmssd ­
1

2p

Z 1`

2`

gqmswde2isw dw ­ 2i
X

k

dke2iwks,

(4)

with dk being the multiplicities of resonances, i.e.,dk ­ 1
for nondegenerate states. Extraction of the frequenc
© 1997 The American Physical Society 825
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wk, and amplitudes,dk , from the signalCqmssd defined
on a finite segment is known asharmonic inversionwith
a large variety of applications in various fields [10]. Re
cently the method was applied to analyze quantum spec
by fitting them to the functional form of Gutzwiller’s trace
formula [11]. It is the main issue of this Letter to show tha
this procedure can be reverted andsemiclassicaleigenval-
ues and resonances can be extracted by fitting Gutzwille
semiclassical periodic orbit recurrence signalCscssd to the
functional form of Eq. (4). This means that the method
harmonic inversion can be successfully applied for pe
odic orbit quantization. The frequencies,wk, obtained by
harmonic inversion ofCscssd are the semiclassical approxi
mation to the poles of Green’s function in (3).

The harmonic inversion problem can be formulated as
nonlinear fit (see, e.g., Ref. [10]) of the signalCssd defined
on an equidistant grid,

cn ; Csntd ­
X

k

dke2intwk , n ­ 0, 1, 2, . . . , N ,

(5)

with the set of generally complex variational parame
ters hwk , dkj. [In this context the discrete Fourier trans
form scheme would correspond to a linear fit withN
amplitudesdk and fixed real frequencieswk ­ 2pkyNt,
k ­ 1, 2, . . . , N. The latter implies the so-called “uncer
tainty principle”; i.e., the resolution, defined by the Fourie
grid spacing,Dw, is inversely proportional to the length
smax ­ Nt, of the signal C(s).] The “high resolution”
property associated with Eq. (5) is due to the fact that the
is no restriction for the closeness of the frequencieswk as
they are variational parameters. In Ref. [12] it was show
how this nonlinear fit problem can be recasted as a l
ear algebra one using the filter-diagonalization procedu
The crucial idea was to associate the signalcn with an au-
tocorrelation function of a suitable dynamical system,

cn ­ kF0je
2intV̂jF0l , (6)

with the effective complex symmetric Hamiltonian̂V
whose eigenvalues are the frequencies,wk , of interest.
k· · · j · · ·l corresponds to the complex symmetric inne
product (i.e., no complex conjugation). The “initial state
F0 is defined implicitly by identifying the amplitudesdk

with the overlapskF0jFnl2 of F0 with the eigenvectors,
Fk , of V̂. This establishes an equivalence between t
problem of extracting spectral information from the sign
with the one of diagonalizing the evolution operatorÛ ­
e2itV̂ (or the HamiltonianV̂) of the fictitious underlying
dynamical system. The filter-diagonalization method
then used for extracting the eigenvalues ofV̂ in any
chosen small energy window. Operationally this is don
by solving the small generalized eigenvalue problem,

Us pdBk ­ u
p
k Us0dBk , (7)

whose eigenvaluesu
p
k ­ expf2iptwkg and eigenvectors

Bk yield the frequencieswk with their amplitudesdk for
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a chosen frequency interval. The convergedwk and dk

should not depend onp. This condition allows one to iden-
tify spurious or nonconverged frequencies by comparin
the results with different values ofp (e.g., withp ­ 1 and
p ­ 2). In periodic orbit quantization the amplitudesdk

are the multiplicities of semiclassical resonances and al
allow one to check the convergence of the calculation
Eigenvalues with amplitudesdk close to 1 are assumed
to be well-converged nondegenerate states. The know
edge of the operator̂U (or V̂) itself is not required as for a
properly chosen basis its matrix representationUs pd can be
expressed only in terms ofcn. The advantage of the filter-
diagonalization procedure is its numerical stability with re
spect to both the length and complexity (the number an
density of the contributing frequencies) of the signal. Her
we apply the method of Ref. [13] which is an improvemen
of the filter-diagonalization method of Ref. [12] in that it
allows one to significantly reduce the required length o
the signal.

Note that the diagonalization of small matrices in (7
does not imply that the results of periodic orbit quantiza
tion are more “quantum” in any sense than those obtaine
e.g., from a cycle expansion. The eigenvalues are solutio
of nonlinear equations, and the diagonalization is equiva
lent to the search for zeros of the dynamical zeta functio
in the cycle expansion technique. Numerical calculatio
of the zeros is also a nonlinear problem, and in contra
to the matrix diagonalizations there might be a problem o
missing roots.

As a first example we now apply the method of harmoni
inversion to the three disk scattering problem which ha
served as a model system for periodic orbit quantization
many investigations during recent years [4,14–16]. Th
radius of the disks is normalized toR ­ 1, and the sys-
tem is characterized by the distanced between the disks.
In billiards the scaled actions is given by the lengthL
of orbits ss ­ Ld, and the quantized parameter is the ab
solute value of the wave vectork ­ jkj ­

p
2mEyh̄. In

Fig. 1 we present results ford ­ 6. Figure 1(a) shows the
trace of the semiclassical propagatorCscsLd. The groups
with oscillating sign belong to periodic orbits with differ-
ent cycle lengths in the symbolic code of Cvitanovic´ and
Eckhardt [4]. To obtain a smooth function on an equidis
tant grid, required for our harmonic inversion method, th
d functions in (2) are convoluted with a Gaussian func
tion. This does not change the underlying spectrum. Th
result of the high resolution spectral analysis of this signa
is shown in Fig. 1(b). The crosses represent semiclas
cal poles for which the amplitudesdk are very close to
dk ­ 1, mostly within one percent. Because the ampli
tudes converge much slower than the frequencies, the
resonance positions are assumed to be very accurate wit
the semiclassical approximation. In fact, a perfect agre
ment to many significant digits is achieved for these pole
with the results obtained by cycle expansion [16]. For th
diamonds the amplitudes deviate fromdk ­ 1 within 5%
to maximal 50%. Figure 2 presents results for a shorte
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FIG. 1. Three disk scattering system (A1 subspace) withR ­
1, d ­ 6. (a) CsLd, trace of the semiclassical propagator. T
signal has been convoluted with a Gaussian function of wi
s ­ 0.0015. (b) Semiclassical resonances. The resona
positions marked by diamonds might be less accurate (see t

distanced ­ 2.5 between the disks. For largeL groups
of orbits with the same cycle length of the symbolic co
strongly overlap and cannot be recognized in Fig. 2(a).
this case the convergence of the conventional cycle
pansion is rather slow because the semiclassical Sel
zeta function has poles [15]. The total number of co
verged semiclassical resonances obtained atd ­ 2.5 is
small compared to the scattering system withd ­ 6 be-
cause the length of the signal is by a factor of 7 shor
than that in Fig. 1(a). More resonances at higherk values
might be obtained from a longer signal.

As a second example we apply the method of harmo
inversion to the famous Riemann zeta function [17].
pointed out by Berry [18], the density of zeros of the ze
function z szd along the linez ­

1
2 2 iw can be written

in formal analogy to Gutzwiller’s trace formula (1) as
nonconvergent series withSp,m ­ wm lnspd andAp,m ­
i lnspdypmy2. Here the “periodic orbits” are the prim
numbers,p, andm ­ 1, 2, . . . formally counts the “repe-
titions.” Applying our method of harmonic inversion t
the signal

Cssd ­ i
X
p

X̀
m­1

lnspd
pmy2

dfs 2 m lnspdg , (8)
he
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FIG. 2. Same as Fig. 1 but with separation ratioR : d ­
1 : 2.5 and convolution ofCscsLd with a Gaussian function of
width s ­ 0.0003.

we obtained about 80 zeros converged to 6 digit precis
from a signal withsmax ­ lns1000d ­ 6.91 (168 prime
numbers) and about 2500 zeros converged to 12 di
from a signal withsmax ­ lns106d ­ 13.82 (78498 prime
numbers). Note that these results have been obta
directly from analyzing the signal (8) without usin
the functional equation for the Riemann-Siegel formu
[17,18]. In general, the number of frequencies (he
Riemann zeros) which can be converged depends on
length of the signal. The required signal length,smax,
for harmonic inversion is related to the average density
frequencies,% swd, by smax , 4p% swd. More details will
be given elsewhere [19].

In conclusion, we have introduced harmonic inversi
as a new and general tool for semiclassical periodic o
quantization and finding the roots of dynamical zeta fun
tions. The method requires the complete set of perio
orbits up to a given maximum period as input, but does
depend on special properties of the orbits, as, e.g., the e
tence of a symbolic code or a functional equation. The
fore, the method might also be a tool for the semiclass
quantization of systems with mixed regular-chaotic cla
sical dynamics, which still is a challenging and unsolv
problem. The signalCscssd can be composed as the su
of a signal related to the irregular part of the classical ph
space with periodic orbit amplitudes given by Gutzwiller
827
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trace formula [2] and a signal related to stable [8] or near
integrable [9] torus structures. It should also be possib
to include, e.g., creeping orbits [20], ghost orbit contribu
tions [11,21,22], and higher orderh̄ corrections [23] into
the signalCscssd, which can then be inverted to reveal th
semiclassical poles.
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