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Sum rules for the total- and scissors-madé strength in odd4 nuclei are derived within the single-
J interacting boson-fermion model. We discuss the physical content and geometric interpretation of
these sum rules and apply them!tEr and'®'Dy. We find consistency with the former measurements
but not with the latter. [S0031-9007(97)03690-9]

PACS numbers: 21.60.Fw, 21.10.Re, 23.20.—g, 27.70.+q

The orbital magnetic dipole scissors mode [1] has We begin by defining the weak coupling basis in which
by now been established experimentally as a genera nucleon with angular momentum is coupled to a
phenomenon in deformed even-even nuclei [2]. The  bosonic wave functioff«, F, Fy, L], j; J, M) specified by
strength systematics and deformation dependence hattee F-spin [13]F, its projectionFy = (N, — N,)/2, the
been extensively measured and corroborated in a variegngular momentum of the IBM coré, and additional
of sum rules [3,4]. Within the interacting boson modellabelsa. J is the total angular momentum (projectidf)
(IBM) [5], a sum rule [3] has related this strength to theresulting from the coupling of andj. The initial ground
number of quadrupole bosons in the ground state of thetate wave function will then be a linear combination of

even-even target nucleu$|N,|0), these states,
3 6NN, lisJ) = Cirllei, F, Fo, L], j; JM) ()
B Ml :O+ N 1+’ — 2 ON O ) s i, i»L ms s o) s

(1) with F, = N/2 the maximal F spin and the label
i indicates all quantum numbers that may be needed

Here g, = (g= — &), g, are the proton(p = 7) and o specify uniquely the initial state. Throughout this
neutron (p = ») boson g factors, andN, the corre-  discussion we assume that the bogompin is conserved.
sponding boson number®, = N + N,. For deformed The magnetic dipole operator is given by
nuclei (0|N,4|0) can be expressed in terms of the defor- . . R
mation determined fronB(E2) values, and the measured T = 8nlam + gvLvm + 8jjm
M1 strength was shown to be in good agreement with this =gJm + 8obovm + gFJm, (3)
sum rule [6]. A survey [7] of scissors states in deformed n A A s A R A
odd-mass nuclei within the framework of the interactingWhere I =Ly + jm, Lm = Lam + Ly, andj, are
boson-fermion model (IBFM) [8] predicted strong frag- (€ total, IBM core, and single-nucleon angular momen-
mentation and sizable symmetric (single-particle domi{Um operators, respectivelyL,, = (Lzn = Lyn)/2
nated) and nonsymmetric (scissomd)l strength. Initial With Ly the individual boson angular momenta opera-
measurements on odd nuclei (Dy, Gd, Tb) indicated missirS: 8/ iS the nucleong factor, andg = (g= + £,)/2,
ing B(M1) 1 strength compared to the strength observed» = &= — §»» §r = &j — g. The operators/,,, Ly,
in the neighboring even-even nuclei [9—11]. On the othe@Nd /. are F-spin scalars { = F, = 0) and contribute
hand, in'®’Er theseM 1 strengths were found to be com- Only to symmetric— symmetric transitiongF,, — F).
parable, with appreciable contribution coming from higherThe L. operator is anF-spin vector £ = 1,Fy = 0)
energies not accessed in previous experiments [12]. [@Nd contributes also to symmetrie> nonsymmetric
spired by these puzzling results, we have derived sum ruld§cissors) transitions(F,, — F,, — 1) [7]. The total
for the total and scissors mod€1 strength in odd nu- B(M1) strength from the ground state to all final states is

L Lo given by
clei within the IBFM. We focus on odd nuclei with the 3 S K JITI TR

fermion in an orbital with single-nucleon angular momen- ZB(MI o f) =

tum j, which, for practical purposes, means that our sum 7 4 @7 +1)

rules are applicable to nuclei for which the ground state - i(i-JlT CTis ) (4)
has the fermion filling the intruder (abnormal) orbit. In 4’ e

general, we find that the sum rules measure two quantwhere the dot inT - T denotes a scalar product and
ties, the average value of; in the ground state and the (i;J||T||f;Js) is a reduced matrix element (r.m.e.). By
average relative orientation of the single-particle and totalising tensor operator identities [14] and the Wigner-
angular momenta. We apply the formalism'¢bDy and  Eckart theorem inF-spin space, we can evaluate the
167Er having an odd neutron in thig;,, orbital. matrix elements off - T in the weak coupling basis.
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Specifically, T - T is a sum of terms of the formh - L, to order ©(1/N) [15]. The L-dependent correction to
j-J5L-j,L-Ly L,-j, andL, - L,. States in the (N,)/N of ©(1/N?)has the same dependence on the aver-
weak coupling basis are eigenstates of the first threage angular momentum squa¢e(L + 1)), as the second
terms. The matrix elements d@f, - j reduce to a r.m.e. term in (6), and reduces the magnitude of ttii§1/N?)
of the angular momentur in the fermion space (which correction. Hence we suggest that the two terms in Eq. (6)
is known) times the r.m.e. of, between boson states constitute the contribution of the core to the taBth/1)
with (F,,, Fy). The bosonic matrix element is related by and can be calculated in the way outlined in [6] to order
the Wigner-Eckart theorem to a matrix element betweer® (1/N) using the deformation of the odd nucleus. To
states with(F,,, Fy = F,,) for which L, becomes half this order, the sum rule in Eq. (5) states that the summed
the total boson angular momentum in the boson spacé{1 strength from the ground to the scissors mode in an
whose matrix elements are diagonal and known. Similandd nucleus exhibits quadratic dependence on the Bohr-
F-spin reduction appears in the matrix elements of thévottelson quadrupole deformation [6] and is equal to the
F-spin vectorl - L, term. Likewise, we can evaluate summedB(M1 : 0" — 17) strength in the neighboring
the L, - L, contribution by decomposing it té&-spin  even-even nucleus. Adapting the criteria of [16] for as-
components{ = 2,Fy = 0) and F = Fy = 0), in the  signing measured/1 strength to the scissors mode we
same way that was done for even-even nuclei in [3]obtain the values foB(M1).ore WhICh are2.42(0.18) ,uN
The relevant-spin Clebsch-Gordan coefficients (C.G.C.) from 9Dy [17] and2.67(0.19) u3 from 166Er [18]. The
induce particularN, dependence for each term. The measured smssors strengtt0ig1(0.10) w3 in '6'Dy [10]
resulting matrix elements of - T in the weak-coupling and3.14(1.12) % in '’Er [12], assuming/ transitions.
baSIS are diagonal i, and by averaging them over Referring to the sum rule of Eq. (5), these results indicate
>, C} ;.. we can evaluate the right-hand side of Eq. (4). a significant lack oM 1 scissors strength it' Dy and con-
ConS|der first theV/ 1 strength from the ground to the sistency, within the experimental errors, f6fEr.
scissors states. This involves symmetsitonsymmetric To obtain a sum rule for the total/1 strength in
transitions with a change of spin: F, — F,, — 1, odd nuclei, we need to consider the contributions of
and hence are induced only by the isovector operaall terms in Eg. (4). We note, however, that unlike
tor g, L,. Consequently, their contribution to the summedeven-even nuclei, there is a magnetic dipole transition
strength is proportional to thé&-spin C.G.C.g%(F,, — to the ground state proportional to the magnetic mo-
1,Fo;1,0|F,,, Fo)> =2g2N,N,/N(N —1). This depen- ment. This elastic transition is not measured(ine’)
dence provides the signature needed to identify thend(y,y’) experiments, which employ continuous wave
contribution of these transitions to the right-hand side ofbbeams (Bremsstrahlung)' hence, we subtract it and obtain

Eqg. (4), and thus leads to the following sum rule for the
M1 strength from the ground state to the scissors mode D BM1:i—f)= [<l JIT - TlizJ)
(sc) in odd-A nuclei, f#i iz JIT i I
S BM1:i—se,f) =Y BML:i— fleore. (5) - W} (8)
f f
Here 3 NN The subtraction in Eq. (8) results in partial cancellation of
ZB(Ml S = Peore = i g’ m terms, and we finally arrive at the following sum rule:
- _
! (L(L+1)) D BMI:i—f)= > BMI:i— fleoe
X 6<Nd>_T , [#i 4
+-—(g; — 9%+ 1
(6) 1y 8T8l
and 2
X [1 — {(cosh)], 9
(Vo) = 3 Chulls P Fo. L) IMINo| ©
. whereg = (N,g, + N,g,)/N is the weighted boso
_JjGg+ D +JU + )—<L(L+1))
(L(L + 1)) = ZC (LI +1 (cosf) = 2+ DIU + 1)

The first term in expressmn (6) is similar to that in Eq. (1), (10)
except that in the latte0|N,|0) is the average number The right-hand side of Eg. (10) is the semiclassical
of quadrupole bosons in the ground state of the evenexpression [14] for the cosine of the angldetween the
even nucleus with boson angular momentum z&re<0), VeCtOFS] and J (see Fig. 1). The sum rule, therefore,
whereas(N,) in Egs. (6)—(7) is the average number of provides information on the relative orientation of these
quadrupole bosons in the core of the neighboring odd nuangular momenta which, in turn, as seen from Eq. (10),
cleus which will have an admixture of boson angular mo-depends on the average angular momenta squaie +
menta. However, for deformed nuclei in the largdimit, 1)) of the core. From (9), we see that the single-
(N4)/N is independent of the boson angular momentumrmucleon contribution to theB(M1) vanishes for both
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pling limit of the IBFM [8,20]. In this limit, the ampli-
tudes in Eq. (2) are proportional to a C.G.Cx ;5 =
V2L + 1)/(2J + 1)(L,0;j,K|J,K) with L even and

K is the projection ofj (and of J) along the symmetry
axis (the corresponding projection bfis zero). We can
then calculate the required averages by using the fact that
the expression for casin Eqg. (10) can be related to aj6-
symbol,

(cosh) = (1YL @) + @) + 1)

(i e

’ and then use the well-known identity for summing & 6-
FIG. 1. Angular momenta for a particle coupled to an axially times two C.G.C. [14]. We find

symmetric core. J, L, andj are the total-, core-, and single- 5 "y )
particle angular momenta, respectivel is the projection of 2K° + (=177 + 1/2)(j + 1/2)dk 12
VU +Dj+ D

(cosf) =

Jj (and ofJ) on the symmetry axis.

(14)
The transitionsKk — (K — 1) are Pauli forbidden which
gives K # 1/2),

total alignment _and antialignment® (= 0, 7), and is
maximum when; and J are perpendicularf(= 7 /2).
The particular j(j + 1)[1 — (cos# )*] dependence is

intuitively understood [19] from the geometry of the . _ _ 3 . _»
angular momenta shown in Fig. 1. For the magneticJ;‘B(M1 PLK = K = Der = 8 (gj = 2)
transition strength, only the componentjoberpendicular X [j(j+1)

to J (jL = jsing) is effective (oscillating dipole as
> > — K(K —1)]. (15)

J precesses abouf), whereas the parallel component _

(ji = jcosh) contributes only to the static moment We have evaIL_J?Ited the Pauli-corrected tatal sum
[see Eq. (11) below]. The core contribution in Eq. (9)ule 1;2; the nuclei®!Dy (j = 13/2, 7 = 5/2, K = 5/2)

is determined by the same procedure discussed for ti@nd °'Er (j = 13/2, J =7/2, K =17/2), taking the
scissors mode sum rule of Eq. (5). The paramegeasd exp_erlmentalB(Ml)Core values as before from the neigh-
(cosf ) can be determined from the magnetic momentd0ring even-even nuclei and using the total strength

of the odd nucleus;) and the neighboring even-even identified (assumingM1 transitions) [10,12]. From
nucleus ), the magnetic moments of the firgt™ states in'*Dy

w, = gl and '°Er, we determineg = 0.362 uy and 0.318 uy,

’ respectively.We then determinédos6 ) from the mag-
netic moments of'®'Dy (u; = —0.480 uy) and '¢7Er
(uw; = —0.56385 uy) using the bare Schmidt value of
gj.schmide = —0.2943 uy for 1ij3,, neutron orbital, and
the quenched valu€).7g; schmiac = —0.2060 uy. The
results are summarized in Table I. We see that, whereas
the '’Er sum rule is consistent, within the experimental

J = j, so that{cosf ) = 1 and hence both the total and )
L error, with the measured value of the tofdll strength,
scissorsM 1 strengths are equal (M 1)core. However, for 1'Dy there is a large amount of missing strength,

in general, the sum rule in Eq. (9) is an upper limit on the uggesting that®'Dy has “unexpected properties,” not
total B(M1) strength because the basis states of bo_son%7Er as implied by the title of [12]. The missing sc’issors
coupled to a single-nucleon will pe overcor_nplete since, | strength in 1¥!Dy may reside at higher energies
the_ bosons represent coh_erent pairs of fermlons, some OI - — ntered if67Er [12]), while the missing total
which are occupying the single-nucleon orbifal Hence, 1 strength (single-particle dominated) may also be at

the sum rule which includes only Pauli allowed state . . o
(PA) will be in reality given by ower energies whe_rg the increased bac.kgrou_nd _I|m|_ts the
experimental sensitivity [11]. There are initial indications

I R (§ )
7y [g +(8 — 9 JU D) <0080>}J- (11)
We take g; to be the Schmidt value; schmiac Or the

quenched SchmidL7g; schmidar [7]-
For weak coupling, the ground state has= 0 and

Z BM1:i— f)pa = Z BM1:i—f) that a fluctuation analysis of the spectra can be used to fix
f#i f#i the unresolved strength in the background and leads to
- Z BM1 :i— f)pr. comparable strengths [21].
f#i The sum rules reported in this work rely on gofd

(12) spin symmetry. The validity of this assumption and the
To calculate the Pauli forbidden (PF) strength, we needmplications of breaking this symmetry de1 transitions
a model which we presently take to be the strong couin odd nuclei was elaborated in [7], and shown that in the
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TABLE I. The total B(M1) strength in units of(u%) for '*'Dy and '9Er for bare and
quenched Schmidg; values are tabulated{cos6 ) is defined in (10)>. B(M1) is the total
contribution of the sum rule (9% B(M1)p is the contribution of the Pauli forbidden states in
the strong coupling limit (15)) B(M1)p, is the total strength of the Pauli allowed states (12),
and B(M 1)exp are the measured values given in [10,12], respectively. Choice of parameters is
discussed in the text.

Nucleus gj (cos) Y BM1) Y BMpr D2 BM1pa Y B(M1)ey,
161Dy g Schmidt 0.358 6.78 (0.18) 2.31 4.47 (0.18) 0.88 (0.13)
161Dy 0.7g;schmiat 0413 5.53 (0.18) 1.73 3.80(0.18) 0.88 (0.13)
167y g Schmidt 0.445  6.16 (0.19) 1.78 4.38 (0.19)  3.49 (1.15)
167y 0.7g;schmiac ~ 0.520  5.00 (0.19) 1.31 3.69 (0.19)  3.49 (1.15)
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