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Sum rules for the total- and scissors-modeM1 strength in odd-A nuclei are derived within the single-
j interacting boson-fermion model. We discuss the physical content and geometric interpretation of
these sum rules and apply them to167Er and161Dy. We find consistency with the former measurements
but not with the latter. [S0031-9007(97)03690-9]
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The orbital magnetic dipole scissors mode [1] ha
by now been established experimentally as a gene
phenomenon in deformed even-even nuclei [2]. TheM1
strength systematics and deformation dependence h
been extensively measured and corroborated in a vari
of sum rules [3,4]. Within the interacting boson mode
(IBM) [5], a sum rule [3] has related this strength to th
number of quadrupole bosons in the ground state of t
even-even target nucleus,k0jNd j0l,X

f

BsM1 : 01 ! 11, fd 
3

4p
g2

y

6NpNn

NsN 2 1d
k0jNd j0l .

(1)

Here gy  sgp 2 gnd, gr are the protonsr  pd and
neutron sr  nd boson g factors, andNr the corre-
sponding boson numbers,N  Np 1 Nn . For deformed
nuclei k0jNdj0l can be expressed in terms of the defo
mation determined fromBsE2d values, and the measured
M1 strength was shown to be in good agreement with th
sum rule [6]. A survey [7] of scissors states in deforme
odd-mass nuclei within the framework of the interactin
boson-fermion model (IBFM) [8] predicted strong frag
mentation and sizable symmetric (single-particle dom
nated) and nonsymmetric (scissors)M1 strength. Initial
measurements on odd nuclei (Dy, Gd, Tb) indicated mis
ing BsM1d " strength compared to the strength observ
in the neighboring even-even nuclei [9–11]. On the oth
hand, in167Er theseM1 strengths were found to be com
parable, with appreciable contribution coming from high
energies not accessed in previous experiments [12].
spired by these puzzling results, we have derived sum ru
for the total and scissors modeM1 strength in odd nu-
clei within the IBFM. We focus on odd nuclei with the
fermion in an orbital with single-nucleon angular momen
tum j, which, for practical purposes, means that our su
rules are applicable to nuclei for which the ground sta
has the fermion filling the intruder (abnormal) orbit. In
general, we find that the sum rules measure two quan
ties, the average value ofNd in the ground state and the
average relative orientation of the single-particle and to
angular momenta. We apply the formalism to161Dy and
167Er having an odd neutron in the1i13y2 orbital.
0031-9007y97y79(5)y813(4)$10.00
s
ral

ave
ety
l

e
he

r-

is
d
g
-
i-

s-
ed
er
-
er
In-
les

-
m
te

ti-

tal

We begin by defining the weak coupling basis in which
a nucleon with angular momentumj is coupled to a
bosonic wave functionjfa, F, F0, Lg, j; J, Ml specified by
theF-spin [13]F, its projection,F0  sNp 2 Nndy2, the
angular momentum of the IBM coreL, and additional
labelsa. J is the total angular momentum (projectionM)
resulting from the coupling ofL andj. The initial ground
state wave function will then be a linear combination o
these states,

ji; Jl 
X
L

Ci,Ljfai , Fm, F0, Lg, j; JMl , (2)

with Fm  Ny2 the maximal F spin and the label
i indicates all quantum numbers that may be neede
to specify uniquely the initial state. Throughout this
discussion we assume that the bosonF spin is conserved.
The magnetic dipole operator is given by

Tm  gp L̂p ,m 1 gnL̂n,m 1 gjĵm

 gĴm 1 gyL̂y,m 1 gFĵm , (3)

where Ĵm  L̂m 1 ĵm, L̂m  L̂p ,m 1 L̂n,m, and ĵm are
the total, IBM core, and single-nucleon angular momen
tum operators, respectively,̂Ly,m  sL̂p ,m 2 L̂n,mdy2
with L̂r,m the individual boson angular momenta opera
tors, gj is the nucleong factor, andg  sgp 1 gndy2,
gy  gp 2 gn, gF  gj 2 g. The operatorŝJm, L̂m,
and ĵm are F-spin scalars (F  F0  0) and contribute
only to symmetric! symmetric transitionssFm ! Fmd.
The L̂y operator is anF-spin vector (F  1, F0  0)
and contributes also to symmetric! nonsymmetric
(scissors) transitionssFm ! Fm 2 1d [7]. The total
BsM1d strength from the ground state to all final states i
given byX

f

BsM1 : i ! fd 
3

4p

P
f jki; JjjT jjf; Jf lj2

s2J 1 1d


3

4p
ki; JjT ? T ji; Jl , (4)

where the dot inT ? T denotes a scalar product and
ki; JjjT jjf; Jfl is a reduced matrix element (r.m.e.). By
using tensor operator identities [14] and the Wigner
Eckart theorem inF-spin space, we can evaluate the
matrix elements ofT ? T in the weak coupling basis.
© 1997 The American Physical Society 813
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Specifically,T ? T is a sum of terms of the form̂L ? L̂,
ĵ ? ĵ, L̂ ? ĵ, L̂ ? L̂y, L̂y ? ĵ, and L̂y ? L̂y . States in the
weak coupling basis are eigenstates of the first thr
terms. The matrix elements of̂Ly ? ĵ reduce to a r.m.e.
of the angular momentum̂j in the fermion space (which
is known) times the r.m.e. of̂Ly between boson states
with sFm, F0d. The bosonic matrix element is related b
the Wigner-Eckart theorem to a matrix element betwe
states withsFm, F0  Fmd for which L̂y becomes half
the total boson angular momentum in the boson spa
whose matrix elements are diagonal and known. Simi
F-spin reduction appears in the matrix elements of t
F-spin vectorL̂ ? L̂y term. Likewise, we can evaluate
the L̂y ? L̂y contribution by decomposing it toF-spin
components (F  2, F0  0) and (F  F0  0), in the
same way that was done for even-even nuclei in [3
The relevantF-spin Clebsch-Gordan coefficients (C.G.C
induce particularNr dependence for each term. Th
resulting matrix elements ofT ? T in the weak-coupling
basis are diagonal inL, and by averaging them overP

L C2
i,L we can evaluate the right-hand side of Eq. (4).

Consider first theM1 strength from the ground to the
scissors states. This involves symmetric!nonsymmetric
transitions with a change ofF spin: Fm ! Fm 2 1,
and hence are induced only by the isovector ope
tor gyL̂y . Consequently, their contribution to the summe
strength is proportional to theF-spin C.G.C.g2

ysFm 2

1, F0; 1, 0jFm, F0d2  2g2
yNpNnyNsN 2 1d. This depen-

dence provides the signature needed to identify t
contribution of these transitions to the right-hand side
Eq. (4), and thus leads to the following sum rule for th
M1 strength from the ground state to the scissors mo
(sc) in odd-A nuclei,X

f

BsM1 : i ! sc, fd 
X
f

BsM1 : i ! fdcore . (5)

HereX
f

BsM1 : i ! fdcore 
3

4p
g2

y

NpNn

NsN 2 1d

3

∑
6k Nd l 2

k LsL 1 1d l
N

∏
,

(6)
and

k Nd l 
X
L

C2
i,Lk fai , Fm, F0, Lg, j; JMj Nd j

3 fai , Fm, F0, Lg, j; JM l , (7)

k LsL 1 1d l 
X
L

C2
i,LLsL 1 1d .

The first term in expression (6) is similar to that in Eq. (1
except that in the latterk0jNdj0l is the average number
of quadrupole bosons in the ground state of the eve
even nucleus with boson angular momentum zero (L  0),
whereaskNdl in Eqs. (6)–(7) is the average number o
quadrupole bosons in the core of the neighboring odd n
cleus which will have an admixture of boson angular m
menta. However, for deformed nuclei in the largeN limit,
kNdlyN is independent of the boson angular momentu
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to order O s1yNd [15]. The L-dependent correction to
kNdlyN of O s1yN2d has the same dependence on the ave
age angular momentum square,kLsL 1 1dl, as the second
term in (6), and reduces the magnitude of thisO s1yN2d
correction. Hence we suggest that the two terms in Eq. (
constitute the contribution of the core to the totalBsM1d
and can be calculated in the way outlined in [6] to orde
O s1yNd using the deformation of the odd nucleus. To
this order, the sum rule in Eq. (5) states that the summ
M1 strength from the ground to the scissors mode in a
odd nucleus exhibits quadratic dependence on the Bo
Mottelson quadrupole deformation [6] and is equal to th
summedBsM1 : 01 ! 11d strength in the neighboring
even-even nucleus. Adapting the criteria of [16] for as
signing measuredM1 strength to the scissors mode, we
obtain the values forBsM1dcore which are2.42s0.18d m

2
N

from 160Dy [17] and2.67s0.19d m
2
N from 166Er [18]. The

measured scissors strength is0.71s0.10d m
2
N in 161Dy [10]

and3.14s1.12d m
2
N in 167Er [12], assumingM1 transitions.

Referring to the sum rule of Eq. (5), these results indica
a significant lack ofM1 scissors strength in161Dy and con-
sistency, within the experimental errors, for167Er.

To obtain a sum rule for the totalM1 strength in
odd nuclei, we need to consider the contributions o
all terms in Eq. (4). We note, however, that unlike
even-even nuclei, there is a magnetic dipole transitio
to the ground state proportional to the magnetic mo
ment. This elastic transition is not measured inse, e0d
and sg, g0d experiments, which employ continuous wave
beams (Bremsstrahlung); hence, we subtract it and obtaX

ffii

BsM1 : i ! fd 
3

4p

∑
ki; JjT ? T ji; Jl

2
jki; JjjT jji; Jlj2

s2J 1 1d

∏
. (8)

The subtraction in Eq. (8) results in partial cancellation o
terms, and we finally arrive at the following sum rule:X

ffii

BsM1 : i ! fd 
X
f

BsM1 : i ! fdcore

1
3

4p
sgj 2 gd2js j 1 1d

3 f1 2 kcosul2g , (9)

whereg  sNpgp 1 NngndyN is the weighted bosong
factor and

k cosu l 
js j 1 1d 1 JsJ 1 1d 2 k LsL 1 1d l

2
p

js j 1 1dJsJ 1 1d
.

(10)

The right-hand side of Eq. (10) is the semiclassica
expression [14] for the cosine of the angleu between the
vectors $j and $J (see Fig. 1). The sum rule, therefore
provides information on the relative orientation of thes
angular momenta which, in turn, as seen from Eq. (10
depends on the average angular momenta squarek LsL 1

1d l of the core. From (9), we see that the single
nucleon contribution to theBsM1d vanishes for both
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FIG. 1. Angular momenta for a particle coupled to an axiall
symmetric core. J, L, and j are the total-, core-, and single-
particle angular momenta, respectively.K is the projection of
j (and ofJ) on the symmetry axis.

total alignment and antialignment (u  0, p), and is
maximum when$j and $J are perpendicular (u  py2).
The particular js j 1 1d f1 2 k cosu l2g dependence is
intuitively understood [19] from the geometry of the
angular momenta shown in Fig. 1. For the magnet
transition strength, only the component ofj perpendicular
to J (j'  j sinu) is effective (oscillating dipole as
$j precesses about$J), whereas the parallel componen
( jk  j cosu) contributes only to the static moment
[see Eq. (11) below]. The core contribution in Eq. (9
is determined by the same procedure discussed for
scissors mode sum rule of Eq. (5). The parametersḡ and
k cosu l can be determined from the magnetic momen
of the odd nucleus (mJ ) and the neighboring even-even
nucleus (mL),

mL  gL ,

mJ 

"
g 1 sgj 2 gd

s
js j 1 1d
JsJ 1 1d

kcosul

#
J . (11)

We take gj to be the Schmidt valuegj,Schmidt or the
quenched Schmidt0.7gj,Schmidt [7].

For weak coupling, the ground state hasL  0 and
J  j, so thatk cosu l  1 and hence both the total and
scissorsM1 strengths are equal toBsM1dcore. However,
in general, the sum rule in Eq. (9) is an upper limit on th
total BsM1d strength because the basis states of boso
coupled to a single-nucleon will be overcomplete sinc
the bosons represent coherent pairs of fermions, some
which are occupying the single-nucleon orbitalj. Hence,
the sum rule which includes only Pauli allowed state
(PA) will be in reality given byX

ffii

BsM1 : i ! fdPA 
X
ffii

BsM1 : i ! fd

2
X
ffii

BsM1 : i ! fdPF .

(12)

To calculate the Pauli forbidden (PF) strength, we nee
a model which we presently take to be the strong co
y

ic

t

)
the
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e
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d
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pling limit of the IBFM [8,20]. In this limit, the ampli-
tudes in Eq. (2) are proportional to a C.G.C.CK ,L,j,J p

2s2L 1 1dys2J 1 1d sL, 0; j, KjJ, Kd with L even and
K is the projection ofj (and of J) along the symmetry
axis (the corresponding projection ofL is zero). We can
then calculate the required averages by using the fact t
the expression for cosu in Eq. (10) can be related to a 6-j
symbol,

kcosul  s21dj1J1L11
q

s2j 1 1d s2J 1 1d

3

øΩ
L j L
1 J j

æ¿
, (13)

and then use the well-known identity for summing a 6-j
times two C.G.C. [14]. We find

kcosul 
2K2 1 s21dj2JsJ 1 1y2d s j 1 1y2ddK ,1y2p

JsJ 1 1djs j 1 1d
.

(14)

The transitionsK ! sK 2 1d are Pauli forbidden which
gives (K fi 1y2),X

ffii

BsM1 : i, K ! f, K 2 1dPF 
3

8p
sgj 2 gd2

3 f js j 1 1d

2 KsK 2 1d g . (15)

We have evaluated the Pauli-corrected totalM1 sum
rule for the nuclei161Dy ( j  13y2, J  5y2, K  5y2)
and 167Er (j  13y2, J  7y2, K  7y2), taking the
experimentalBsM1dcore values as before from the neigh-
boring even-even nuclei and using the total streng
identified (assumingM1 transitions) [10,12]. From
the magnetic moments of the first21 states in160Dy
and 166Er, we determineḡ  0.362 mN and 0.318 mN ,
respectively.We then determinedk cosu l from the mag-
netic moments of161Dy (mJ  20.480 mN) and 167Er
(mJ  20.56385 mN ) using the bare Schmidt value of
gj,Schmidt  20.2943 mN for 1i13y2 neutron orbital, and
the quenched value,0.7gj,Schmidt  20.2060 mN . The
results are summarized in Table I. We see that, where
the 167Er sum rule is consistent, within the experimenta
error, with the measured value of the totalM1 strength,
for 161Dy there is a large amount of missing strength
suggesting that161Dy has “unexpected properties,” not
167Er as implied by the title of [12]. The missing scissor
M1 strength in 161Dy may reside at higher energies
(as encountered in167Er [12]), while the missing total
M1 strength (single-particle dominated) may also be
lower energies where the increased background limits t
experimental sensitivity [11]. There are initial indications
that a fluctuation analysis of the spectra can be used to
the unresolved strength in the background and leads
comparable strengths [21].

The sum rules reported in this work rely on goodF-
spin symmetry. The validity of this assumption and th
implications of breaking this symmetry onM1 transitions
in odd nuclei was elaborated in [7], and shown that in th
815



VOLUME 79, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 AUGUST 1997

),
rs is

816
TABLE I. The total BsM1d strength in units ofsm2
N d for 161Dy and 167Er for bare and

quenched Schmidtgj values are tabulated.k cosu l is defined in (10),
P

BsM1d is the total
contribution of the sum rule (9),

P
BsM1dPF is the contribution of the Pauli forbidden states in

the strong coupling limit (15),
P

BsM1dPA is the total strength of the Pauli allowed states (12
andBsM1dexp are the measured values given in [10,12], respectively. Choice of paramete
discussed in the text.

Nucleus gj kcosul
P

BsM1d
P

BsM1dPF
P

BsM1dPA
P

BsM1dexp

161Dy gj,Schmidt 0.358 6.78 (0.18) 2.31 4.47 (0.18) 0.88 (0.13)
161Dy 0.7gj,Schmidt 0.413 5.53 (0.18) 1.73 3.80 (0.18) 0.88 (0.13)
167Er gj,Schmidt 0.445 6.16 (0.19) 1.78 4.38 (0.19) 3.49 (1.15)
167Er 0.7gj,Schmidt 0.520 5.00 (0.19) 1.31 3.69 (0.19) 3.49 (1.15)
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rare-earth region the effect is small. The utility of th
large-N approximation was throughly investigated b
the 1yN technique (see [15] and references therein
Although we have confined the discussion to a singlej
model space for the odd fermion (hence specific odd-ma
nuclei), similar formulas should hold for a situation o
pseudospin symmetry. Multi-j formulation of similarM1
sum rules requires confronting more allowed terms (a
parameters) in theM1 operator and severalj amplitudes
in the fermion wave function.

In summary, we have derived sum rules for magne
dipole transitions in odd nuclei with a nucleon in a sing
spherical orbit,j, assumingF-spin symmetry and large-
N approximation for the boson core. The summedM1
strength from the ground to the scissors mode in su
nuclei depends on the average number of quadrup
bosons in the ground state. This quantity, for larg
N , exhibits quadratic dependence on the Bohr-Mottels
quadrupole deformation and can be determined fro
the scissorsM1 strength in the neighboring even-eve
nucleus or from the deformation of the odd nucleu
to O s1yNd. The total M1 strength depends also on
the average of the cosine of the angle between t
odd nucleon angular momentum and the total angu
momentum. This quantity is related to the average
the core angular momentum,k LsL 1 1d l, and can be
determined from the magnetic moments of the target a
the neighboring even-even nucleus. In general, this s
rule will be an upper limit from which the strength to
Pauli forbidden states needs to be subtracted. In we
deformed nuclei the strong coupling limit can be use
for that purpose. In comparing with the knownBsM1d
strength, we find consistency in167Er for the scissors
and for the total strength. However, we conclude th
a substantial portion of the magnetic dipole scisso
and total strengths are missing in161Dy. Clearly, more
measurements both at higher and lower energies
needed in161Dy to see if the predictions of the sum
rules are satisfied. More and detailed calculations a
needed to understandM1 properties in odd-mass nuclei
In particular, further theoretical attention is needed f
including Pauli corrections in estimates ofM1 strength
and for understanding the different fragmentation patter
observed in different odd nuclei.
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