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is illustrated on a new derivation of the Reggeization of the gluon. [S0031-9007(97)03696-X]
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The concept of effective field theory (for a review, s
[1]) is an important means to obtain qualitative understa
ing of quantum field theories. It is also an important c
culational tool.

Effective field theory provides a mechanism of unific
tion. A well-known example is the connection betwe
the standard model and the grand unification models
Another example is nonrelativistic QED [3,4], where
single fermion field breaks down into two independe
fields of fermions and antifermions.

The calculational advantage is obtained via the us
of the renormalization group (RG) invariance [5]. Sol
ing the RG equations is the most effective way to mak
resummation of the perturbative expansion for the und
lying theory taken in the corresponding “leading logarith
approximation” (see, for example, [6]).

The necessity for developing an effective theory for t
Regge limit of gauge theories is well acknowledged [
10]. It is more pressing now as the energy reached
hadron collisions provides data (see, e.g., [11]) whose
derstanding requires [12] an account of the resumma
of the leading energy logarithms for QCD. For the know
results on the resummation, see [13,14]. Attempts of s
an account are available [15].

Here, we present a new approach which is, in our op
ion, the most straightforward realization of the effecti
field theory concept for the Regge limit. It allows one
prove the Reggeization of the gluon [14,16]—a prope
which is, at the moment, a well-tested conjecture.

Consider a Green’s function of a field theory,

Gsx1, . . . , xnd ­ kTFsx1d · · · Fsxndl ,

where anyxn comprises all variables labeling the fieldF

(in particular, the space-time coordinates or the mome
if one chooses the momentum representation). Cons
next the Green’s function of the boosted fields,

Glsx1, . . . , xn; y1, . . . , ymd

­ kTFlsx1d · · · FlsxndF1ylsy1d · · · F1ylsymdl , (1)

whereFlsxd ­ B21sldFsssBsldxddd is the Lorentz boost of
the fieldF along az axis, parametrized by the exponenti
of the rapidity of the boost,l ­

p
sssBsldpddd1ysssBsldpddd2,

for a four-vectorp (p6 ­ p0 6 pz are the light-cone
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components ofp). The Regge limit is then the one of
infinite rapidity, i.e.,l ! `. The effective Regge theory
is to approximate the boosted Green’s functions of Eq. (
at largel.

Intuitively, the collection of the fields labeled byxi in
Eq. (1) represents the fast right-mover excitations in thez
direction, while they fields represent the fast left movers.
The l then scales as the invariant energy of the relativ
motion of the left and right movers.

The momenta of the fields in the right-hand side (rhs) o
Eq. (1) satisfy, for largel, either

sjp1j . m1, jp2j , m2d , sp [ VRd (2)

for the right movers or

sjp1j , m2, jp2j . m1d , sp [ VLd (3)

for the left movers. Themi are arbitrary scales. The
only requirement we need for them isVR > VL ­ [.
The RG invariance requires that any physical predictio
be independent of their values.

Instead of the single fieldF of the underlying theory,
the effective theory has two independent fields,

sssR1ylsxd ­ Fsxddddjp[VR ,

sssLlsxd ­ Fsxddddjp[VL
.

(4)

Thep above is supposed to belong tox. Thel subscript
denotes the boost transformation, as in Eq. (1).

With Eq. (4), the boosted Green’s function of Eq. (1) is

Glsx1, . . . , xn; y1, . . . , ymd

­ kTRsx1d · · · RsxndLsy1d · · · Lsymdl . (5)

The effective action for the fieldsR, L is defined by

expfiSeffsR, L, ldg ­
Z Y

p”sVR<VLd
dFsxd expfiSsFdg ,

(6)

where the rhs is expressed throughR, L by Eq. (4).
If the boosted Green’s functions of Eq. (1) are finite in

the limit l ! ` modulo logarithms ofl, i.e., logarithms
of the invariant energy for the relative motion of the
left and right movers, then the effective action of Eq. (6
should have a finite limit,

SeffsR, Ld ­ lim
l!`

SeffsR, L, ld . (7)
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In that case, the only dependence onl left in the effective
theory enters through the scalesmi of Eqs. (2) and (3)
which cut the effective theory since, after been boost
the scales get al dependence. This removes the cu
from the effective theory in the limitl ! `. In this way,
to study the energy dependence in the Regge limit me
to study the infrared and ultraviolet divergences of t
effective theory.

Note that the cuts involve only the longitudinal dire
tions. Thus we need to study only the divergences o
two-dimensional(2D) field theory at fixed values of the
transverse coordinates (momenta). By transverse c
dinates we mean all the variables labeling theR and L
fields, except the light-cone coordinatesx6. The coupling
“constants” of this 2D theory depend on the transverse
ordinates. The RG equations for the coupling consta
are integral equations in the space of the transverse c
dinates. In the case of QCD, these equations contain
same information as the Balitsky-Fadin-Kuraev-Lipat
(BFKL) equation [14].

To check this, consider the gluodynamics as the und
lying theory, i.e.,

SgluesAd ­ 2
1
4

sFa
mnd2, (8)

with A denoting the color octet of vector gluon field
Fa

mn ­ ≠mAa
n 2 ≠nAa

m 2 gCabcAb
mAc

n and g the gauge
coupling. The effective Regge gluodynamics is then
theory of two color octets of vector fieldsR andL. With
Eq. (6), its action up to terms of orderg2 is

SeffsR, Ld ­ SgluesRd 1 SgluesLd 1 SintsR, Ld , (9)

whereSint is an action of interaction between the right- an
left-boosted gluons, bilinear inR andL.

Note that the self-interaction of both right and le
movers mimics the self-interaction of the underlying fie
This is a consequence of the Lorentz invariance of
underlying theory.
810
ed,
ts

ans
he

c-
f a

oor-

co-
nts
oor-
the

ov

er-

s,

a

d

ft
ld.
the

FIG. 1. Diagrams contributing toSint to orderg2. (a),(b),(c),
see text.

The Sint term comes from the diagrams in Fig. 1. Infi
nitely boosting the fields in accordance with the labe
on the external legs of the diagrams from Fig. 1, o
obtains a finite expression forSint. The finiteness is a
nontrivial outcome of a cancellation of infinities betwee
the contributions of Figs. 1(b) and 1(c).

The intermediate steps of the following calculation ma
depend on the gauge. In these cases Feynman gaug
implied.

To specify the form ofSint from Eq. (9), we need the
following objects:

sN Rdmsx'd ­
Z

dx2dy2≠iR
a
1sx2, x'dDsx2 2 y2d

3 ≠iR
b
1sy2, x'dCmba , (10)

whereRa
m is the gluon right-mover field taken on a ligh

front x1 ­ 0, ≠i are the derivatives over transverse coo
dinates (summation overi ­ 1, 2 is implied), andD is

Dsxd ­
Z dk

2p

eikx

ik
, (11)

sMRdmsx'd ­
Z

dx2dy2≠i≠ifRa
1sx2, x'dDsx2 2 y2d

3 Rb
1sy2, x'dgCmba , (12)
lowing
sAR
1 dmsx'd ­

Z
dx2f≠2Ra

1sx2, x'dRb
2sx2, x'd 1 ≠2Ra

2sx2, x'dRb
1sx2, x'd

1 Ra
1sx2, x'd≠1Rb

1sx2, x'd 2 ≠1Ra
1sx2, x'dRb

1sx2, x'dgCmba , (13)

sAR
2 dmsx'd ­

Z
dx2f≠iRa

i sx2, x'dRb
1sx2, x'd 2 Ra

1sx2, x'd≠iRb
i sx2, x'dgCmba , (14)

sAR
3 dmsx'd ­

Z
dx2fRa

i sx2, x'd≠iRb
1sx2, x'd 2 ≠iRa

1sx2, x'dRb
i sx2, x'dgCmba , (15)

sAR
4 dmsx'd ­

Z
dx2≠2Ra

i sx2, x'dRb
i sx2, x'dCmba . (16)

The derivatives in the above equations act only on their nearest right neighbors. For further convenience, the fol
Fourier transformations of linear combinations of the above operators are introduced:

Ñ R
m sq'd ­

p

2

Z d2x'

s2pd2 e2iq'x'

∑
1
2

sN Rdmsx'd 1
1
4

sMRdmsx'd 2
1
2

sAR
1 dmsx'd 2

1
2

sAR
2 dmsx'd

2 2sAR
3 dmsx'd 1 4sAR

4 dmsx'd
∏

, (17)
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by the
M̃R
m sq'd ­

p

2

Z d2x'

s2pd2 e2iq'x'

∑
1
2

sN Rdmsx'd 2
1
4

sMRdmsx'd 2
1
2

sAR
1 dmsx'd 2

1
2

sAR
2 dmsx'd

2 2sAR
3 dmsx'd 1 4sAR

4 dmsx'd
∏

, (18)

J̃ R
m sq'd ­

p

2

Z d2x'

s2pd2
e2iq'x' fsAR

1 dmsx'd 1 sAR
2 dmsx'd 1 2sAR

3 dmsx'd 2 4sAR
4 dmsx'dg , (19)

L̃ R
m sq'd ­

p

2

Z d2x'

s2pd2 e2iq'x' fsAR
1 dmsx'd 1 sAR

2 dmsx'd 1 4sAR
3 dmsx'd 2 4sAR

4 dmsx'dg . (20)

We also need the same set of objects for the left movers; the definitions may be contrived from Eqs. (10)–(20)
substitutionsR ! L, 1 ! 2, 2 ! 1 (the last two substitutions act on the longitudinal Lorentz indices).

Sint is expressed in terms of these objects as

SintsR, Ld ­
Z

d2q'hG0sq'dfJ̃ R
m sq'dJ̃ L

m s2q'd 2 M̃R
m sq'dM̃L

ms2q'd 2 M̃R
m sq'dL̃ L

m s2q'd 2 L̃ R
m sq'dM̃L

ms2q'dg

1 G1sq'dfÑ R
m sq'dL̃ L

m s2q'd 1 L̃ R
m sq'dÑ L

m s2q'dg 1 G2sq'dÑ R
m sq'dÑ L

m s2q'dj , (21)
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where summation over color indicesm is implied.
The “coupling constants”Gk­0,1,2sq'd depend on the

transverse momentum transferred from the right mov
to the left movers,

Gksq'd ­
g2

2q2
'

. (22)

We need to distinguish between them because they cou
different numbers ofN operators.

It is important to note the following: Right movers
interact with the left movers only by their values at th
light front x1 ­ 0, while the left movers interact only
by their values on the perpendicular light frontx2 ­ 0.
It is also important thatN , M are nonlocal on the
corresponding light fronts, whileAi are local.

Next we consider the divergences of the one-lo
Feynman diagrams generated bySeff of Eq. (9). We need
to consider the divergences in the longitudinal integratio
arising as the cuts on the longitudinal momenta fro
Eq. (2) for theR field and from Eq. (3) for theL field
are removed. That should be done at fixed transve
coordinates.

It turns out that there are only two divergent diagram
in the one-loop approximation (Fig. 2). They are log
rithmically divergent in the infrared because of the sing
larity 1yik in the rhs of Eq. (11). As can be seen in th
diagrams, the problem is factorized: Calculation of the d

FIG. 2. Divergent one-loop diagrams of the effective theor
(a),(b) See text.
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vergences of Fig. 2(a) does not involve theL fields, while
calculation of Fig. 2(b) does not involve theR fields.
Thus, it suffices to study the infrared divergences gene
ted by the self-interaction of theR fields in the operators
Ñ R

m , M̃R
m of Eqs. (17) and (18). The left sector give

the same divergences.
It is a remarkable fact that these infrared divergenc

may be absorbed in a multiplicative renormalization
the operatorsÑ R,L

m . Namely, a simple calculation show
that

dpkÑ R,L
m sq'dl ­ lnsldasq'dÑ R,L

m sq'd , (23)

wheredp meansdivergent part, the angle brackets denote
the correction of theN R

m sN L
m d for the self-interaction

of the R fields (L fields), andl is the exponential of
the rapidity of the boost. The rest of the operato
sM , J , L d participating in Eq. (21) are finite in the
one-loop approximation. We should note that Eq. (2
was obtained with the dimensional regularization of th
integration over the transverse momentum involved
particular, integrals such as

R
dl'yl2

' were set to zero).
The asq'd of Eq. (23) determines the leading contr

bution to the renormalization “constant” of the operato
Ñ R,L

m sq'd. It turns out to be

asq'd ­ 3aSq2
'

Z d2k'

s2pd2k2
'sk 2 qd2

'

, (24)

coinciding with the known Regge trajectory of th
Reggeized gluon [14,16].

It follows from Eq. (23) and the one-loop finiteness o
the operatorsM , J , L that all one-loop divergences gen
erated by the effective action of Eq. (21) may be remov
by a renormalization of the coupling constants,Gksq'd !
Gk,Rsq'd ­ Zksq'dGksq'd. The renormalization con-
stantsZksq'd, k ­ 0, 1, 2, are

Zksq'd ­ 1 2 k lnsldasq'd (25)

in the one-loop approximation.
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This allows one to apply the standard RG consideratio
(see, e.g., a text book [17]). In particular, running cou
plingsḠksq'd may be defined as functions of the logarithm
of the boosted cutm1yl. The standard procedure yields
the following RG equation for the running couplings:

≠Ḡksq'd
≠ lnsld

­ 2
1

Zksq'd
≠Zksq'd
≠ lnsld

Ḡksq'd

ø kasq'dḠksq'd , (26)

whose solution is

Ḡksq'd ­ lkasq'd g2

2q2
'

[this takes into account that boundary values ofḠksq'd at
l ­ 1 are given by Eq. (22)].

In conclusion, we formulated an effective Regge gaug
field theory and recognized the problem of resummatio
of energy logarithms for gauge theories as a problem
infrared renormalization of some nonlocal operators in
2D field theory. The trajectory of the Reggeized gluon wa
rederived in this way. In a forthcoming article [18], we
shall show that the same renormalization of the nonloc
operators contains, in the two-loop approximation, th
BFKL equation.
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