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Motion of Neutron Vortices in the Inner Crust of a Neutron Star
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The interaction of a macroscopic length of neutron vortex with a polycrystalline nuclear lattice ca
simplified by a lattice potential density representation. Expressions are obtained for the weak-cou
time-averaged force on a moving vortex and, at very small velocities, for an approximate upper lim
the force for strong coupling between vortex and lattice. The force is too small to provide the minim
vortex pinning inferred from pulsar glitches. [S0031-9007(97)03750-2]

PACS numbers: 97.60.Jd, 74.60.Ge, 97.60.Gb
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The periodicity of the radio emission observed in pu
sars is caused by the rotation of the charged compone
of magnetized neutron stars. The neutron superfluid r
tates at an angular velocityVn slightly greater than the
observed angular velocityV: its vortex array is sparse,
the mean density being2Vnyk & 105 cm22, wherek is
the neutron superfluid quantum of circulation. It is be
lieved that the angular velocity differenceVn 2 V is
normally maintained by vortex pinning to the Coulomb
lattice of nuclei forming the solid crust of the star. The
observed pulsar glitches are sudden increases inV which
occur when large-scale vortex unpinning allows the tran
fer of angular momentum from the neutron superfluid t
the charged components whose rotation is observed [1,
Postglitch relaxation of the spin-down rateÙV is almost
certainly determined by the dissipative motion of neutro
vortices.

Neutron vortex pinning has certain differences from
pinning in electronic type II superconductors. Coopera
tive effects are unimportant, except in large-scale u
pinning, owing to the large intervortex spacing. Th
Coulomb lattice is homonuclear because proton shell cl
sures determine the nuclear charge [3]. Because the
ternal cooling rate is slow, lattice defects are formed i
local thermodynamic equilibrium and are those with low
formation enthalpy. (Vortices in electronic type II su-
perconductors pin to a dense microstructure of defec
formed in the fabrication process. The density of pinnin
centers and the strength of the elementary pinning for
are usually treated as phenomenological parameters.) T
neutron superfluid coherence lengthj is of the same
order of magnitude as the bcc Coulomb lattice constanta
s10211 10212 cmd. Therefore, the pinning mechanisms
considered in this work are pinning by monovacancies a
intrinsic pinning in a polycrystalline structure.

Energy transfer to Kelvin wave excitations is the mos
important dissipative process resulting from the vortex
nucleus interaction [4,5]. In this Letter, we observe tha
for a vortex moving slowly with velocityyL through a
polycrystalline structure, the instantaneous force effectiv
in exciting long-wavelength Kelvin waves can be derive
from a potential energy per unit length of vortex which
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has the translational properties of a lattice potent
We use the free-vortex Green function to obtain, f
strong coupling and very smallyL, an approximate uppe
limit for the time-averaged force. Averaged over
macroscopic length, this force can be identified with t
maximum pinning force acting on a deformable vort
through its interaction with a polycrystalline structure. A
estimate, for reasonable superfluid parameters, shows
it is too small to provide the minimum vortex pinnin
required to explain the magnitude and frequency of pul
glitches [6] and that other pinning mechanisms have to
considered.

The vortex-lattice interaction can be represented b
sum of potential functions of the instantaneous perp
dicular distancesrs between the vortex axis and the nucl
at lattice pointss. (Vortices can be assumed local
rectilinear over lengths of the order of the bcc latti
constanta.) The Cartesian coordinates adopted here
fixed in the rest frame of the undisturbed vortex who
axis coincides with thez axis. Displacement of the
vortex axis from its undisturbed position in thex-y plane
is denoted by the vectorusz, td. We consider constan
motion of the lattice relative to the Cartesian coordina
oriented such that, for a lattice points referred to the
coordinates,s1,3 are constant ands2  2yLst 2 tsd. The
vortex intersects a polycrystalline structure of sing
crystalssid with lengthsbi and orientations, referred to
the axes fixed in the vortex frame, specified by sets
reciprocal lattice vectorsgi (the subscripti is suppressed
in all formulas). The potential sum over any length
vortex smaller thanbi but large compared witha is
replaced by an integral over a potential energy per u
length of vortex,X

s
V srsd !

X
g

Z
Ugeig?r̃ dz , (1)

in which the potential energy density has the translatio
properties of a lattice potential and

g ? r̃  g ? x0 1 g ? u 1 g2yLt 1 g3z , (2)

where x0 is an arbitrary constant displacement. T
dispersion relation for unperturbed Kelvin phonons [7]
© 1997 The American Physical Society
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angular frequencyv and wave numberp is v  cK p2,
in which the parametercK  2sky4pd ln pj is only
logarithmically dependent onp and on the coherence
length j for the neutron superfluid. The basic angula
frequencyv  g2yL present in Eq. (2) corresponds, fo
yL & 102 cm s21, with very small wave numbersp ø g,
and the dominant term in the potential density withi
a given single crystal is expected to be that for th
reciprocal lattice vectorg giving the smallestjp 2 g3j.
Although the replacement (1) is not generally corre
unless specific model assumptions are made, we obse
that it is always valid for a single dominant term with
very smallg3 provided, as is confirmeda posteriori, that
terms with g3 of the order ofg can be neglected. The
parametersUg are obtained fromV srsd and are rapidly
decreasing functions of the ratio ofj to the bcc lattice
constanta: They also become small for reciprocal lattic
vectors beyond the basic set.

The free-vortex Green function giving the displaceme
usz, td produced by unit impulse in each of thea  1, 2
directions is

Gabsz 2 z0, t 2 t0d 
21

2rkfpcK st 2 t0 dg1y2

3 ssinx 1 is2 cosxd , (3)

where

x 
sz 2 z0d2

4cKst 2 t0d
2

p

4
, (4)

r is the superfluid density, ands2 is the Pauli matrix.
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(The equations of motion are given in Ref. [7]: see a
[8].) With the interaction in a given single crytsal limite
to the dominant potential density term, the function of t
displacementfsz, td  g ? u satisfies

fsz, td 
X
a

2g2
aUg

Z by2

2by2
dz0

Z t

2`

dt0

3 Gaasz 2 z0, t 2 t0 d

3 sinfg ? x0 1 vt0 1 g3z0 1 fsz0, t0dg . (5)

The force per unit length acting on the vortex can
expressed in terms off. It is

faszd  2gaUgksinsg ? x0 1 vt 1 g3z 1 fdl , (6)

where the angle brackets denote a time average.
The functionf can be expressed as a power series

the parameterA  bUgsg2
1 1 g2

2dysrkcK pd and obtained
to lowest order, forjfj ø 1, by introducing the Fourier
transform ofGab,

Gabsp0, v0d  2
1

2rk

√
1 2

v0s2

cKp02

!

3

√
1

v0 2 cKp02 1 ih

2
1

v0 1 cKp02 1 ih

!
, (7)

in whichh is positive and infinitesimal. The displaceme
function, with the constant phaseg ? x0 suppressed, is
fsz, td 
A
2b

(√
1

g3 2 p
2

1
g3 1 p

1
2p

g2
3 1 p2

!
sinsg3z 1 vtd 2

1
g3 2 p

sin

√
sg3 2 pd

b
2

1 pz 1 vt

!

2
1

g3 1 p
sin

√
sg3 1 pd

b
2

1 pz 2 vt

!
2

epsz2by2d

g2
3 1 p2

"
p sin

√
g3

b
2

1 vt

!
1 g3 cos

√
g3

b
2

1 vt

!#

1
e2psz1by2d

g2
3 1 p2

"
p sin

√
g3

b
2

2 vt

!
1 g3 cos

√
g3

b
2

2 vt

!#)
, (8)
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From Eqs. (6) and (8), the force per unit length atz
for which the exponential terms are negligible is linear
dependent on sinsg3 6 pdz and on cossg3 6 pdz. The
total force acting on the sector is

F  2
gaUgA

2b

(
f1 2 cossg3 2 pdbg

sg3 2 pd2

1
f1 2 cossg3 1 pdbg

sg3 1 pd2

)
, (9)

confirminga posteriori the assumption that only a single
reciprocal lattice vector need be considered. The wea
coupling Eqs. (8) and (9) are of interest as a guide to t
strong-coupling case. The order of magnitude of the to
force is independent ofbi and, for displacement such tha
ly

k-
he
tal
t

jfj ø 1, is of the same order of magnitudesgaUgg21
3 d as

the instantaneous external force acting on the vortex. T
bi independence of the force exists to any order inA. For
z such that the exponential terms in Eq. (8) are negligib
examination of Eqs. (5) and (7) shows that in orderjAjk, f

is linearly dependent on sinsg ? x0 1 vt 1 g3z 1 fd in
orderk 2 1 and on sinspnz 6 nvtd and cosspnz 6 nvtd
where the integersn arek, k 2 2, . . . . The wave numbers
pn are defined bynv  cKp2

n and are not multiples of
g3. Systematic application of this result shows that cosf

and sinf in orderk have, respectively, no terms linearl
dependent on sinsg ? x0 1 vt 1 g3zd and cossg ? x0 1

vt 1 g3zd, so establishing that the time-averaged for
per unit length given by Eq. (6) in orderk 1 1 is linearly
dependent on sinusoidal functions ofz, with wave numbers
793
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given by linear combinations of thepn and g3, as is the
lowest-order force.

In the limit of very strong couplingsjUgj ! `d the
form of Eq. (5) is such that the periodic componen
of f for very small yL must be approximately equal
to the sawtooth functionf`  2g ? x0 2 vt 2 g3z
with 2p , f` , p. The displacement componentsu1,2
form a set of evenly spaced kinks (Fig. 1; see als
Ref. [9]) each corresponding with movement of the vorte
axis from one lattice plane to the adjacent. A kink move
with velocity g2yLyg3 parallel with thez axis and has
length of the order of,  s2prkcKyg2jUgjd1y2. The
time averaged force acting on the sector at extreme
smallyL can be at most of the order of,gjUgj.

Application of the classical theory of homogeneou
nucleation [10] indicates that the polycrystalline lattic
should form, from the undercooled metastable state, w
large bi owing to the high growth velocity of the crys-
talline phase and the low cooling rate of the star. (Stru
tures with smallbi were assumed in Ref. [5].) The single
crystal reciprocal lattice vectors have a distribution of or
entations with respect to the vortex so that in applyin
Eq. (6) to find the force on theith sector, terms inf aris-
ing from sectorsj fi i make no contribution. The order
of magnitude of the time-averaged force acting on a sec
is gajUgj minsg21

3 , ,d. Summation over sectors with ran-
domly orientedgi and average linear dimensionbi gives a
force per unit length offR  6s1 1 ln g,djUgjy bi acting
on a long length of vortex. Interaction of a vortex with th
disordered planes forming single crystal boundaries giv
a contribution about an order of magnitude smaller. Co
pling with other degrees of freedom has been neglecte
as has dissipation associated with transitions in a therm
population of Kelvin phonons [5].

The calculation ofUg assumes the bcc lattice constan
of Negele and Vautherin [3] and a coherence length bas
on the neutron energy gap of Ainsworth, Wambach, an
Pines [11]. The vortex-nucleus potentialV srsd has a com-
ponent produced by the change in condensation ene
at separationsrs & j and a long-range component given

FIG. 1. The undisturbed vortex axis moves upward with
small velocity yL; the kinks formed as the vortex passe
between lattice planes have length, and travel to the right
with velocity g2g21

3 yL.
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by the change in kinetic energy of the circulating supe
fluid at rs * j. Our calculations ofUg show that the
long-range term [12], compared with the condensation e
ergy term of Alparet al. [13], is the more important. The
computedUg for the basic reciprocal lattice vectors has
maximumUg  1.1 3 105 erg cm21 at a matter density
of 3 3 1013 g cm23 and decreases rapidly at higher den
sities (Ug  6 3 103 at 8 3 1013 g cm23) owing to the
smoothing which occurs where the coherence length a
proaches the lattice constant.

Models in which neutron vortices are pinned by in
teraction with the Coulomb lattice of nuclei in the crus
are not consistent with the expression obtained forfR .
Analysis of the magnitude and frequency of Vela puls
glitches [6] shows that the depinning threshold at matt
density 8 3 1013 g cm23 must exceed1015 dyne cm21.
The conditionfR * 1015 dyne cm21 would requirebi &

2.5 3 10210 cm, completely at variance with the kind
of structure indicated by homogeneous nucleation theo
[10]. However, it is possible that thegi are not randomly
oriented. Existing neutron energy gap calculations [1
are not sufficiently reliable to exclude the possibility tha
vortex formation precedes solidification. But even in th
limit in which the whole crust forms as a specially ori
ented single crystal, it would be surprising if there we
no disruption caused by evolution of the spin direction
of the internal magnetic flux distribution [15]. Pinning by
a random distribution of monovacancies can be exclud
by application of an approximate scaling theory [16], wit
the superfluid parameters of Ref. [13], which shows th
unphysically large monovacancy fractional concentratio
cy * 0.02 would be required to produce the necessary d
pinning threshold.

Separate phases of rod and slab nuclei have be
predicted [17,18] at matter densities intermediate betwe
those for the bcc lattice of spherical nuclei and for th
liquid core. The time-averaged force calculations give
here are unchanged in essence: The reciprocal lat
vectors are confined to a plane or to a fixed direction. O
conclusion that vortex pinning in the crust is improbab
leaves the strong interaction between neutron and pro
vortices in the liquid core [19–21] as a possible pinnin
mechanism. If this is the case, our entire picture of puls
glitches, which appear to be a common phenomenon, m
have to be revised.
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