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Nature of Driving Force for Protein Folding: A Result From Analyzing
the Statistical Potential
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In a statistical approach to protein structure analysis, Miyazawa and Jernigan derdgeck 20
matrix of inter-residue contact energies between different types of amino acids. Using the method of
eigenvalue decomposition, we find that the Miyazawa-Jernigan matrix can be accurately reconstructed
from its first two principal component vectors a&; = Cy + Ci(q; + ¢;) + Caq;q;, with constant
C’s, and 20q values associated with the 20 amino acids. This regularity is due to hydrophobic
interactions and a force of demixing, the latter obeying Hildebrand'’s solubility theory of simple liquids.
[S0031-9007(97)03600-4]

PACS numbers: 87.15.By, 02.10.Sp, 64.75.+g

Proteins fold into specific three dimensional structuregrix M can be reconstructed by the following formula:
to perform their diverse biological functions. It is now N
well established that for small proteins the information M;; = Z AaVaiVa, (1)
contained in the amino acid sequence is sufficient to a=1
determine the folded structure, which is the structure withwhere M;; is the element of the matrix in row and
minimum free energy [1]. Thus the native structure iscolumnj, A, is the ath eigenvalue, and/,; is theith
dictated by the physical interactions between amino acidsomponent of the corresponding eigenvector. We have
in the sequence, and understanding the nature of su@mnalyzed the MJ matrix using eigenvalue decomposition.
interactions is crucial for protein structure prediction. First, we subtract the meg®;;) from each element and

As a protein contains thousands of atoms and interacthen analyze the eigenvalue spectrum of the remaining
with huge number of water molecules, it is not feasiblematrix [9]. We find that the eigenvalue spectrum has two
to calculate the free energy function from first principles.dominant eigenvalues which are much larger in magnitude
An often adapted practical approach is to derive a coarstnan the rest. Specifically, we finby = —22.49, A, =
grained potential (often on the level of amino acids)18.62, while the rest of the eigenvalues have absolute
using the known structures in the existing protein datavalues between 2.17 and 0.013. This suggests (as we
banks. In such an approach, the energy of a particulsshall demonstrate below) that the matrix can be accurately
substructure in proteins is derived from the number of itseconstructed using only the first two eigenvectdfs, =
appearances in the structure data bank via a Boltzmani;;) + A,V ;V,; + A, V,;V, ;. Further analysis shows
factor [2—4]. A classic example of such a statisticalthat the second eigenvector is related to the first one by
potential is the Miyazawa-Jernigan (MJ) matrig(ax 20  a shift and rescaling, i.e¥,;, = B + yVy;, with 8 =
inter-residue contact-energy matrix derived by Miyazawa—0.30, y = —0.90, and a correlation coefficient 0.986.
and Jernigan [2,5]. This matrix tabulates the interactiorlUsing this relation, the expression féf;; can be written
strength between any two types of amino acids in proteinsimply as
and has been widely applied in protein design and folding

In this Letter, we apply a general method of matrixwhereq; = V;;, and theC's are constants;, = —1.492,
analysis, namely, eigenvalue decomposition, to the M&; = 5.030, andC, = —7.400. Thus we can reconstruct

matrix. The analysis reveals an intrinsic regularity of thethe MJ matrix (which in principle could have 210 indepen-
MJ matrix, which yields basic information about the naturedent elements) by using only twenty parameigrsasso-
of the driving force for protein folding. We show that ciated with the twenty amino acids, and three interaction
despite the complicated interactions in proteins, the majocoefficients. Such a simple interaction form is often the
driving force is hydrophobic interaction and a force of starting point for a theoretical modeling of proteins [10].
demixing, the latter obeying Hildebrand'’s solubility theory = The spectrum of the MJ matrix (two large eigenvalues
of simple liquids [8]. The result allows us to attribute with corresponding eigenvectors related to each other)
the interactions responsible for folding to quantifiablereflects the specific physical interaction between the
properties of individual amino acids. These propertiesamino acids. The connection between the interaction and
suggest further experimental tests, and can be used ftie spectrum can be understood in the following general
analyzing sequence-structure relation. way: Consider a pairwise interaction mata%;; which
Eigenvalue decomposition is a general approach tis determined by certain properties of two spediesd
analyzing matrices. A givev X N real symmetric ma- j, denoted byg; andg;. Assume, on physical grounds,
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that M;; can be expressed as an analytical functiorunchanged. Therefore any transformatipr~ Ag + B
f(gi,q;) with a well defined converging power series, with a corresponding change in tli&s yields an identical
f(gi.q;)=Co+ Ci(g; + q;) + Caqiq; + C3(qiz + q?) + matrix. To better understand the physical meaning of
C4(qiq,2- + qjq,z) + ..., where theC's are constants. Ed. (2), we rewrite it in the following form:
Take first the example where the expansion ends at M = hi + hj — Colqi — q,)*/2. 3)
the C, term, |.e.,M,<‘,- =Cy + Cl(q,' + q/) + CZC]iqj-
Since any row of the matriM is given by a vector Where
U;, = .(C()."'r Cig)I + (C; + C24q;)Q, which is a linear hi = Cy/2 + Ciq; + (C2/2)qi2. (4)
combination ofl and Q, whereI ={1,1,...,1}, and . o .
Q ={¢1.92,....¢s}, one can decompose the vector Now each term in Eq. (3) above is invariant under the
spaceG into the subspac&) spanned byl andQ, and transformation discussed above. . _ _
its perpendicular compliment,. It is obvious that What is the physical basis for the simple interaction
G. gives rise ton — 2 zero eigenvalues, a¥V, =0 form in Eq. (3)? Consider the quantity;; = 2M;; —
for any vectorV, in the subspaces,. Furthermore, Mi — M;;. Since M;; is the energy of forming a
the two eigenvectors with nonzero eigenvalues must bgontact between typeand typej amino acids in water,
expressible as a linear combinationlodnd Q, therefore  Xxi; gives the energy of breaking oniel contact and
they are related to each other by a shift and rescaling®ne j-j contact and forming two pairs ofj contacts;
Similarly, if the expansion ends at th€, term, there thus x;; is the energy change due to the mixing of
will be three nonzero eigenvalues, and the correspondinge two types of amino acids. According to Eqg. (3),
eigenvectors will lie in a subspace spannedip®, and  Xij = —C2(¢; — ¢;)*. This form has a striking similarity
Q?, where Q2 = {¢4?.43,....4%}. The same argument tO th(? mixing energy _o_f two simple liquids as given
applies to all higher order expansions. This analysi®y Hildebrand's solubility theory (HST) [8]. In his
applies to the ideal case where there is no noise in thé933 classic paper, Hildebrand derived the energy of
matrix. Introducing noise leads to a slight mixing@f ~ Mixing of two simple liquids by summing over the
and Gy and therefore to small nonzero values for the resPairwise interactions throughout the mixture. Assuming
of the eigenvalue spectrum. that the mixing is random and that the potentials between
The reconstructed matrix in Eq. (2) reproduces themolecules are of the Lennard-Jones type due to the
original MJ matrix to a high accuracy. Figure 1 shows thelondon dispersion force [11], Hildebrand arrived at a
correlation between the original MJ matrix and the reconformula which expresses the energy of mixing of liquids
structed one. The regression lineyis= 0.999x + 0.008, A andB as Enixing * (84 — 85)°, where d, 5 are pure
and the correlation coefficient is 0.989. On averag&omponent properties related to the square root of the
Eq. (2) gives matrix elements with only 5% error com- vaporization energies of liquidé and B, traditionally
pared to the original matrix. called the “solubility parameter.”
Notice that one can redefine tlgs in Eq. (2) by a Now we can imagine the formation of 2j contacts

shift and rescaling while leaving the interaction formin water by two steps, formation of ami contact and
a j-j contact followed by a mixing [12]. The energy

change for the first step i8h; + 24;, and that for the
0 second stepy;;. As the formation of ani-i contact
. in water is related to the segregation of amino acids
I N XY of type i in water, we expect thak; is related to the
2k | aa hydrophobicity of amino acid. Indeed, we find that
i e h; correlates very well with the hydrophobicity scales
L published in the literature [13] (see Fig. 2). Thus despite
: the complicated interactions in proteins, we find that the
pairwise inter-residue interactions responsible for folding
can be attributed to the hydrophobic force and a force
of demixing, the latter obeying HST. (Although HST
was derived for simple nonpolar molecules, it was found
previously that the theory describes well the behavior
of polymer blends [14]. The application to proteins is
” > another example of the more general scope of HST.)
M, (original) The above analysis presents a simple picture of the
nature of interactions between amino acids. It also
and M;;, the matrix elements reconstructed from Eq. (2).pr.OVIdeS ex'perlmentally testable predlctlpns. Comparison
The regression line iy = 0.999x — 0.008. The correlation with HST indicates that the;; we derive should be

coefficient is 0.989. Inset: The distribution of the MJ matrix linearly related to the solubility parameter of amino acid
elements. The unit of energy i T. i, which can be measured. Furthermore, we predict
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FIG. 1. Correlation betweeM;;, the original matrix elements,
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' example, Eq. (2) underestimates the attraction between
positively and negatively charged amino acids (GLU-
s R K . ARG, GLU-LYS, ASP-ARG, ASP-LYS). In other words,
E=D the x;; term (which measures the energy of mixing) does
a poor job for pairs with opposite charges, which favor
mixing due to Coulomb interaction. Another example is
CYS-CYS contact, where the attraction is stronger than
that given by Eq. (2) due to the formation of a disulfide
bridge. Some exceptions are, of course, expected as we
aimed at revealing the dominant features of the MJ matrix
using only the two dominant eigenvalues and the corre-
sponding eigenvectors. It is certain that some attributes of
amino acids (such as Coulomb charge, sulfhydryl groups,
4 etc.) will not be captured by a simptgvalue.

Notice that in Fig. 2 the charged amino acids fall into
a separate group. Since Eq. (2) gives accurate values
for all the pairs involving charged amino acids (except

Hydrophobicity
o

4 2 0 the four pairs formed between positively and negatively

b charged amino acids), we believe thatfor a charged

FIG. 2. Calculateds; and measured hydrophobicities [13] of amino acid does measure the free energy change of hiding
the 20 amino acids. The type of amino acid is indicated usinghe side chain from water. The different behavior of
the standard one letter code. The straight line is a linea . e ; ST
fit (excluding the charged amino acids) wi?h slope 1.314 an r?arge amino .aCIdS in Fig. 2 is likely due t.o the fact
intercept 0.759. The correlation coefficient is 0.769. at the theoretically constructédand the experimentally
measured hydrophobicity represent different quantities for
charged amino acids. Experimentally hydrophobicity was
from Eq. (4) that hydrophobicity can be expressed as abtained by measuring the relative solubilities of the amino
guadratic function of the solubility parameter. Since theacids in water and organic solvent, which involve different
solubility parameter and the hydrophobicity of an aminoionization states of the amino acids. On the other hand,
can be measured independently, this prediction can alsgives the free energy cost of bringing together two already
be tested. ionized amino acids. Thus, it is not a surprise to find that

Comparison of the terms in Eq. (3) shows that thethese two quantities are not very well correlated.
linear termh; + h; is the dominant one in selecting the The q values we obtain can be used to characterize
native structure. This is because the typical difference oAmino acids. The distribution of thegvalues is bimodal
the linear termés (among different types of contacts) is (see Fig. 3), which supports the notion that amino acids
much larger than the typical difference of the square terrmaturally fall into two distinct groups: “polar” (P) and
S8 x/2, specifically, 6h = 6.52(8 x/2). Therefore the “hydrophobic” (H). This division also accounts for the
energy difference between different compact structurethree different regions in the distribution of the MJ
(due to different arrangements of the contacts) is mainlynatrix elements (see the inset of Fig. 1), which reflect
due to the linear term. Thus, through a quantitative
analysis of the MJ matrix we arrive at the conclusion that
the hydrophobic force is the dominant driving force for
protein folding [15].

The term —Cax(g; — ¢;)*/2 has an important conse-
quence, however. This term favors demixing of amino
acids (, is negative). The microscopic basis for such a L —
demixing force is the dissimilar polarizability of the two
monomers [11]. Since the interior of a protein is com-
posed of various types of amino acids which tend to seg 2r
regate, an amino acid buried in the interior of a protein
will experience an environment which is quite different

from a uniform nonpolar environment. It has been con-

troversial whether one can model the interior of a protein

as a uniform nonpolar environment [16]. This study sug- Y ——— P—
gests that in general it is not adequate to do so. q

Itis worth n_oting that although'Eq. (2) in gengral ineS FIG. 3. Distribution of q values of the 20 amino acids.
a very good fit for contact energies (as shown in Fig. 1);The amino acids fall into two groups: “polar,” largg and
there are a few exceptions where the error is large. Fothydrophobic,” smallg.
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the three possible combinations of the two groups: polar-
polar, polar-hydrophobic, and hydrophobic-hydrophobic.
The sharp division between the two groups as indicated
in Fig. 3 suggests that amino acids in the same group
may play similar roles in structure determination [17].

There is experimental evidence to this effect insofar as
certain proteins can be designed by specifying only the
HP pattern of the sequence [18]. For the purpose of
protein design, they values can serve as a useful scale
for selecting amino acids.

The q values can also be used to analyze the relation
between sequence and structure. In previous studies, hyig]
drophobicity scales have been used to analyze sequences
and locate helical segments [19]. However, there exist[]
many different hydrophobicity scales. Ogrscale has
the advantage of being more closely related to the in-
teractions which determine structure. We find that for a (!
given sequence, segments with alternating large and small
g values usually correspond te helices (consistent with
the previous findings using hydrophobic scales), segments
with long stretches of large values usually correspond to
loops, and segments with long stretches of smaidlues
usually correspond t@ strands.

To summarize, we were able to extract the regular-
ity of the Miyazawa-Jernigan matrix of inter-residue con-
tact energies between amino acids using the method &0l
eigenvalue decomposition. The analysis reveals that the
dominant driving force for protein folding is the hy-
drophobic force and a force of demixing between amino
acids. We were able to construct a solubility scale for
amino acids which can be tested experimentally. Thigq
scale can be used for selecting amino acids for the purpogez]
of protein design, and for analyzing sequence-structure re-
lation. We would like to point out, however, that due
to the statistical nature of the MJ matrix, certain featureg13]
of inter-residue interactions (such as orientational depen-
dence of the interactions, side-chain packing, etc.) are av-
eraged out. The specific features may be necessary f

building a realistic potential for protein folding. 15]

(16]
[17]
[1] C. Anfinsen, Sciencé81, 223 (1973).

[2] S. Miyazawa and R.L. Jernigan, Macromoleculs} 534
(1985); J. Mol. Biol.256, 623 (1996).

[3] D.G. Covell and R.L. Jernigan, Biochemist®0, 3286
(1990).

[4] D.T. Jones, W.R. Taylor, and J.M. Thornton, Nature
(London) 358 86 (1992); J.U. Bowie, R. Lithy, and
D. Eisenberg, Sciencgs3 164 (1991).

[5] To derive the MJ matrix, the position of each amino acid
residue in a protein structure was taken to be the center
of its side chain atom positions. Two residues were[18]
considered to be in contact if the distance between corre[19]
sponding center points was smaller than= 6.5 A. The
contact energy;; between typd and typej amino acids
was obtained by counting the number of contact between

768

these two types of amino acids in the protein struc-
ture data bank. There are two energy matrices in the
MJ paper. One matrix gives the contact energigs=

E;; + Ep — Ey — Ey;, whereE;; measures the absolute
contact energy, and index O refers to the solvent molecule.
Thus ¢;; measures the energy cost of forming typp
contact inside the solvent. This is the matrix we analyze.
The reference state is a state in which amino acids are
randomly mixed with water molecules, and the effective
number of water molecules is estimated from the volume
a protein occupies when performing self-avoiding ran-
dom walk.

For a review, see R.L. Jernigan and I. Bahar, Curr. Opin.
Struct. Biol.6, 195 (1996).

E.l. Shakhnovich, Phys. Rev. Left2, 3907 (1994); V. S.
Pande, A.Yu. Grosberg, and T. Tanaka, Phys. ReS1E
3381 (1995).

J.H. Hildebrand and R.L. ScotfThe Solubility of Non-
electrolytes(Reinhold Publishing Corporation, New York,
1950).

[9] Such a subtraction procedure is necessary to remove a

trivial source of a large eigenvalue. Any matrix with
a nonzero meam, can have one dominant eigen-value
proportional to Nmy if the dimensionN of the matrix

is large. Removing this trivial regularity enables us to
clearly identify other intrinsic regularities which could be
obscured in the spectrum of the unsubtracted matrix.

A Hamiltonian containing theC; term has been derived
for amphiphilic copolymers, see T. Garel, L. Leibler, and
H. Orland, J. Phys. Il (France) 2139 (1994). The more
general form withC, has been used in S.P. Obukhov,
J. Phys. A19 3655 (1986). See also, T. Garel and
H. Orland, Europhys. Let6, 597 (1988).

] R. Eisenschitz and F. London, Z. Phg8, 491 (1930).

Such a hypothetical physical process has been employed
previously by Thomas and Dill. P.D. Thomas and K. A.
Dill, J. Mol. Biol. 257, 457 (1996).

Y. Nozaki and C. Tanford, J. Biol. ChenR46 2211
(1971); M. Levitt, J. Mol. Biol. 104, 59 (1976); M. A.
Roseman, J. Mol. Biol200, 513 (1988).

] W.W. Graesslet al., Macromolecule®8, 1260 (1995).

For a review, see K.A. Dill, Biochemistry24, 1501
(1985);29, 7133 (1990).

A.M. Lesk and C. Chothia, Biophys. 32, 35 (1980).

We believe this is true for determining the overall tertiary
structure. Determining the detailed local structure requires
more specificity; thus the distinctions between amino
acids in the same group could be important. Recently
Jernigan and Bahar argued that classification of amino
acids into two groups (H and P) is inadequate based
on contact energies at shorter distance (with= 4 A)

[6]. Our results indicate that H-P is a valid classification
for contacts more loosely defined (withe = 6.5 A),
corresponding to structures coarse grained over a large
length scale.

S. Kamtekaret al., Science262 1680 (1993).

M. Schiffer and A.B. Edmundson, Biophys. J,

121 (1967); V.l. Lim, J. Mol. Biol. 88, 873 (1974);

D. Eisenberg, R.M. Weiss, and T.C. Terwilliger, Nature
(London)299, 371 (1982).



