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Wavelet Based Multifractal Analysis of Rough Surfaces:
Application to Cloud Models and Satellite Data
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The wavelet transform modulus maxima (WTMM) method is generalized to multifractal image
analysis, providing a statistical characterization of the fluctuating roughness of fractal surfaces. This
isotropic 2D version of WTMM methodology is calibrated on deterministic self-similar interfaces and
random self-affine surfaces (fractional Brownian surfaces and multifractal counterparts). Applications
to high-resolution satellite data and simulated radiance fields for stratocumulus clouds are presented.
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Since the late 1970’s, there have been numerous applicaentinuous wavelet transform (WT) [5] uses the scaling of
tions of fractal ideas [1] to surface science. Indeed, a widg@artition functions computed from the wavelet transform
variety of natural and technological processes generatmodulus maxima (WTMM). The WTMM method allows
complex interfaces [2]. Numerical techniques have beema complete statistical analysis of the roughness fluctuations
designed for interfaces that are isotropic and self-similaof a self-affine function through the entify %) singularity
when magnified equally in all directions and provide goodspectrum. Applications of this method to 1D signals have
estimates of the fractal dimensidpy [1,2]. However, provided insight into a wide variety of outstanding prob-
in the presence of anisotropic scale invariance, differenems, notably in fully developed turbulence [5,6], fractal
methods of computin@r yield different results [3]. Al- growth phenomena [7], and “DNA walk” statistical anal-
ternatively, one can compute the so-called roughness eysis [8]. In this Letter we generalize the WTMM method
ponentH (supposedly equal to the codimensién- Dr)  from 1D to 2D, with the specific goal to analyze the multi-
describing the dependence of the interface’s width withfractal properties of rough surfaces with fractal dimension
measurement scale [1,2]. Unfortunatdly and H are Dy between 2 and 3.
global quantities that do not account for the possibility There is an increasing interest in the application of the
of point-to-point fluctuations in the local regularity of a WT to image processing [9,10]. Mallat al.[9] have
fractal surface. Box-counting and correlation algorithmsextended the WTMM representation in 2D in a manner
were successfully adapted [2] to resolve multifractal scalinspired from Canny’s multiscale edge detectors. The
ing for isotropic self-similar fractals by computation of idea is to first smooth the digital image by convolution
the generalized fractal dimensiofs,. As to self-affine  with a filter, then compute the gradient of the smooth sig-
fractals, Frisch and Parisi [4] proposed, in the contexhal. Define two wavelets¥,(x,y) = 96(x,y)/dx and
of turbulence analysis, an alternative multifractal descrip¥,(x,y) = 96(x, y)/dy, wheref(x, y) is a 2D smoothing
tion based on the scaling behavior of structure functionstunction well localized around = y = 0. For any func-
S,(1) = ((8f1)F) ~ I¢ (p integer> 0), whered f,(x) =  tion f(x,y) € L*(R?), the WT defined with respect i,

f(x + 1) — f(x) is an increment of the recorded signal andW¥, can be expressed as a vector [9]:

over distanced. Then, after reinterpreting the rough- _
ﬁess exponent as a local quantityij[,(ric)l ~glh(x)], theg Ty[f1(b,a) = ViT,L/1(b, @)}, (1)
D(h) singularity spectrum is defined as the Hausdorff di-whereT,[ f1(b,a) = a2 [ [2 0(%)}‘(1’) d*r. If 0 is
mension of the set of points where the local roughness an isotropic wavelet, thefy[ f](b,a) is a continuous
(or Holder) exponent(x) of f is h. In principle D(h) 2D WT of f as originally defined by Murenzi [11]. If
can be attained by Legendre transformingdps. There insteadd is just a smoothing filter such as a Gaussian,
are, however, some fundamental drawbacks to the stru&(r) = exp(—r?/2), then Eq. (1) defines the 2D WT as
ture function method [5]. Indeed, it generally fails to fully the gradient vector of (r) smoothed by dilated versions
characterizeD (1) since only the strongest singularities of 6(r/a) of this filter. Mallatet al. [9] define the WTMM, at
f area priori amenable to this analysis§ [(/) does not a given scale:, by finding positionsh where the modulus
exist for p < 0]. Moreover, singularities corresponding of Ty[ f] (b, a) is locally maximum in the direction of the
to h > 1, as well as regular behavior, bias the estimate ofyradient vectofT'y[ f]. The so-defined WTMM leads to
{p. A new approach to multifractal analysis based on thean efficient analysis of the local regularity ¢fvia the
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Holder exponenk(r) (0 = & = 1). However, we do not
know a priori whether f itself or one of its derivatives
is singular at any given point. We therefore extend the
Hoélder exponent concept to that of singularity strength
as defined by the largest exponent such that there exists
a

a polynomial P,, of order n satisfying| f(r) — P,(r —
ro)l = Clr — ro|"", for r in the neighborhood of, =
(x0,v0). If n < h(rg) <n + 1, then f is n (but not

n + 1) times differentiable ar,. Thus the higher the
exponenth(ry), the more regular the functiofi around
ro. It is now straightforward to generalize the Mallat
et al.result [9]. Provided the firsk moments of the
wavelet W vanish (e.g.,W is the nth derivative of the
Gaussian), the WTMM behaves like [12]

2 2 2 5 :_I T T T (CI)_: 16 -_((Ii) T T T ™]

ITw[ f1(ro, )l = {T%,[ f1(ro,a) + T4, £1(ro, @)} ob ] [
r 1 1.4 -

~ "), 2) T(qz5 _ _ Dq
as we follow the WT “skeleton” defined by the WTMM, ok 1R ]
from large to small scales down to the poigt Because bbb bt
of its “scanning” and “zooming” capabilities, the 2D WT T8 ?1 5 10 “10 3 5 10

is a mathematical microscope that sees the fluctuations

. . . . . FIG. 1. 2D WTMM analysis of self-similar snowflake frac-
of roughness in self-affine surfaces [via local estimatatio als. O(x.y) is the Gaussian function. (a) The one-scale

of the Holder exponenk(r)]. Equation (2) allows us to  spowflake ‘and associated WTMM chains at seale 1/3 and
follow the strategy elaborated for multifractal analysis of1/32. (b) Perspective view of the WTMM skeleton. (gjq)

1D signals [5]. The 2D WTMM method thus consists invs¢. (d) D, vsg. In (c) and (d): ) homogeneous one-scale
defining partition functions with wavelet coefficients from Snowflake and §) multifractal two-scale snowflake.
the WTMM skeleton [12]:

1 q @) As a — 0, the WTMM chain provides a better and bet-
2(g.a) =+ 2. f [Ty f1lsi(a), all”ds; ~ a™%,  ter approximation of the snowflake interface. Figure 1(c)
IEL (a) 3) shows results obtained with the 2D WTMM method for

the partition function scaling exponenigg). According
where L (a) is the set of all maxima chains at scale to Eq. (3), those exponents were computed from linear re-
and s;(a) is the curvilinear coordinate along the chain gressions of I (¢, a) versus Iru over about two decades
[. Note that the exponent(g), ¢ € R, has well-known in scale, corresponding to four steps of the construction
meaning for some specific values @f (i) —7(0) is the  process. Thisr(g) is linear ing, as expected for homo-
fractal dimension of the set of singularities 6f (i) 7(1)  geneous fractals. Figure 1(d) shows that our numerical
is related to the capacity dimensidn-(G) = max2,2 —  results forD, = [7(¢) + 2¢q]/(¢ — 1) agree with theory
7(1)] of the graphG of f, generally equal t@F, and (i)  [11]: D, = In5/In3, independently ofy. Figures 1(c)
7(2) is related to the scaling exponegt of the spectral and 1(d) also show results of similar analyses of a two-
densityS(k) = | f(k)|> ~ |k| # with 8 =4 + 7(2). A  scale snowflake fractal [11}(g) is now a concave non-
statistical characterization of the fluctuations of regularitylinear function which translates to decreasibg’s, the
of a self-affine functionf(x,y) can then be achieved hallmark of multifractal scaling. The agreement between
by determining theD(h) singularity spectrum from the our numerics and theory demonstrates that our WTMM
Legendre transform of(¢) [512]: D(h) = min,[gh —  method can quantify geometrical multifractality in 2D.
7(q)]. Fractional Brownian functionsBy(x,y) are Gauss-
Figure 1 illustrates how the 2D WTMM enlighten ian stochastic processes with stationary increments, often
the hierarchical distribution of singularities in a tuto- used to generate random self-affine surfaces [1—-3] with
rial example, a (zero-area) “snowflake” fractal. We firstknown statistical properties:(q) = gH — 2, 0 < H <
focus our WT microscope on the one-scale snowflakd. We tested the 2D WTMM technique on t&i2 X 512
fractal shown in Fig. 1(a). The WTMM chains computed realizations of By for various values ofH (1/2 cor-
at scaless = 1/3 and 1/3% are also shown in Fig. 1(a). responds to uncorrelated increments, increments being
Figure 1(b) shows the WTMM skeleton obtained by con-correlated for any other value). We focus here on the
tinuously joining these chains over a finite range of scalesuncorrelated casa, , since it has & > power spectrum,
The branching structure of this skeleton clearly reveals theimilar to that of the radiance field investigated further
construction rule of the one-scale snowflake fractal [11]on. Figure 2(a) shows a realization Bf/, and Fig. 3(a)
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tion (pdf) P(Ty(., a)), at different scales. When increas-
ing a, the pdf's become wider and wider but, by plotting
In P versusT,/a", they all collapse onto a single curve
which is well approximated by a parabola, as expected for
Gaussian processes.
Fractal analysis of atmospheric data has gained consid-
erable momentum since Lovejoy’s seminal paper [13] on
_ _ the area-perimeter relation for clouds and rain. Multifrac-
e o o ANBe2E e tal approaches have since been imported into meteorol-
of typical marine stratocumulus off the coast of Southern09Y from statistical fluid dynamics and deterministic chaos.
California. (c) Synthetic radiance field computed with a Cloud structure has been probed internally by radiosondes
fractionally integrated singular cascade model. and aircraft and remotely observed with high-resolution
satellite imagery.In situ cloud data reveal strong variabil-
the scaling of logla®Z (¢, a)]/q versus loga for differ- ity Qf many quantities of interest; f_or instance_, 1.D transects
ent values of: over a large range of scales, the data sgiiof liquid water densny obey multifractal statistics over at
least three decades in scale [14]. Satellite imagery has

on straight lines that are quite parallel. Figure 3(c) dis- !
playsr(q) as estimated by linear regression from Eq. (3)_been prpcessed only by _spectral or bo_x-countlng methods
Being at once persistent and horizontally extended,

Statistical convergence is achieved fe2 < ¢ < 6 and [2]. : .
the data fall on a line of slope = ar/aqg = H = 1/2. ~marine stratocumulus (Sc) layers are responsible for a large
doortion of the Earth'’s global albedo, hence its overall en-
slopes[+(¢) + 2]/q are equal toH = 1/2, within nu- €9y balance (i.e., climate). This motivates us to apply 2D
merical uncertainty. We obtained equally satisfactory’VTMM methodology to charalzcterlze marine Sc structure.
results when investigatin,; for other values off. Ve Startwith alarge<t120 km" X 120 km") completely
As expected from the Legendre transformadf), these cloudy LANDSAT scene [15] ca}pturgd with the Thematic
model surfaces are nowhere differentiable with a uniqud/aPPer camera<30 m resolution) in the0.6-0.7 um
Holder exponent [1,3]: = H andD(h = H) = 2. Fur- qhannel. Flgyr_e 2(b) shows a typlcalz X 512 por-
ther evidence for this roughness homogeneity appears fiPn Of the original 4096 x 4096) image where quasi-

Fig. 4(a) showing the WT probability distribution func- nadir viewing radiance at satellite level is digitized on an
' eight-bit grey scale. To minimize spurious saturation ef-

fects, WTMM analysis was applied only to one half of the

1 data that is only7% saturated, namely, 32 selecte2 X

] 512 subscenes. Figure 5 shows maxima chains computed
] with Eg. (1), taking# as Gaussian, at three different

] scales. The(q) curve in Fig. (c), extracted from the scal-

1 ing behavior of the partition functions defined on these
] maxima chains [Eg. (3)], deviates from a straight line in
= contrast with homogeneous Brownian surfaces. We note
the agreement betweei2) = —0.91 + 0.03 and the es-

I
0 2 4 6

logs(a) !
R e T4 ] timated spectral exponef® = 3.00 * 0.05 = 7(2) + 4.
I X:’e; ] Figure 3(b) shows loga>Z(q,a)]/q versus loga for
T 2 F T T T =
[(a) ]
] ol ]
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FIG. 3. WTMM estimates ofr(q) and D(k) for rough s .
surfaces. 0(x,y) is the Gaussian function. 19@*Z(q,a)l/q 20 0 20
vs log, a, for different ¢, from a sample of (a) ten Brownian a i,

surfacesBy -1/, and (b) 32 LANDSAT subscenes. (ejg) vs

q. (d)D(h) vsh. In(c) and (d): &) By—1/,, dashed line in FIG. 4. Pdf's of rescaled WT coefficients. Murenzi's 2D
(c) is the theoreticat(q) = q/2 — 2 (for clarity the data have continuous WT [11] is used at scales= aq, ao/2, a¢/4,
been shifted upward by+1); (o) LANDSAT radiance data; ay/8. The analyzing wavele@ is the Mexican hat. I® vs
(O) fractionally integrated cascade model; the continuous linedya* for (a) ten Brownian surfaces;,, with H = 1/2 and
correspond to the theoretical spectra) Gynthetic radiance (b) 32 LANDSAT subimages wittH = 0.6 = k(g = 0), i.e.,
field. the most frequent Holder exponent.
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A EGAN N very cIong(g) [Fig. 3(c)]'andD(h) [Fig. 3(d)] spectra
P for the artificial radiance fields and the LANDSAT data.
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