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Vortex Lattices in Cubic Superconductors

V. G. Kogan! P. Miranovig? Lj. DobrosavljevieGruijic,>* W. E. Pickett} and D. K. Christeh
'Ames Laboratory DOE and Department of Physics, lowa State University, Ames, lowa 50011
%Institute of Physics, P.O. Box 57, 11001 Belgrade, Yugoslavia
3Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5345
4Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6061
(Received 12 December 1996

Nonlocal corrections to London equations are employed to describe a variety of vortex lattices seen
through neutron scattering in cubic crystals of SV with large «. Within this model the observed
symmetries of vortex lattices and their coupling to the underlying crystal are reproduced. Predicted
lattice structures are field dependent in agreement with the data. [S0031-9007(97)03649-1]

PACS numbers: 74.60.Ge

The recently renewed interest in the vortex latticesn materials with largex in fields well under theH,,.
(VL) as reflecting on the magnetic structure of vortices,Thus, the idea of developing the nonlocal corrections to
their interactions, and the symmetry of the underlyingthe L theory for description of VL's at low’s is more
order parameter [1-9] prompted us to review a richattractive than the similar idea within the GL framework.
pool of data on VL’'s in conventional superconductors. These corrections have recently been derived to address
The hexagonal VL (made of equilateral triangles) isthe problem of lowF magnetization in high:. materials
seldom seen even in cubic materials. Only the low{16]. We reproduce here the main points of this work.
field decoration experiments (in which the intervortexWe then use the nonlocal corrections to analyze in detail
spacing exceeds the penetration depth) usually shothe data [12] on VL's in ¥Si and show that our approach
this structure predicted by the Ginzburg-Landau (GL) omot only predicts correctly all structures observed, but
London (L) theories. VL's seen in small angle neutronprovides the VL parameters and thdield dependence
scattering experiments (SANS) on cubic crystals arelose to the observed experimentally.
distorted triangular (or square, in some situations) with The nonlocality in superconductors is caused by a finite
parameters depending on both temperature and appliaize £, of Cooper pairs: The currerji(r) is determined
magnetic field. Extensive data on cubic Nb, PbTI, andoy the vector potentiaA within a domain~¢&, around
PbBi are summarized by Schelten and Obst [10], and [17]. Instead of local relations betwegnand A of
by Christenet al.[11]. The latter group have also the GL or L approaches, the microscopic theory provides
studied \4Si, the cubic material with relatively large GL an integral equation with a kerngd(r) extending to
parametek [12]. Related to these are new SANS data ondistances~¢&y; in Fourier space this relation is of the
borocarbides (e.g., ErbB,C) with the field along [001] form j(k) = Q(k)A(k) [18]. In the GL domain where
in which the square lattice is observed in high fields [13]. £(T) > &, or far from the vortex cores, the nonlocal

Since the GL or L theories incorporate the crystalcorrections vanish.
anisotropy via the second rank mass tenagr, within Deriving the L equations from the microscopic theory,
these approaches the cubic crystals should behave ase assumes that the currents small relative to the
isotropic, i.e., VL's should always be hexagonal. At-depairing value do not suppress the order parameter
tempts were made to incorporate the nonlocal effect$A|. Only the phased changes in space and provides
which correspond to higher order derivatives in the GLthe flux quantization. In fact, the small current case is
free energy expansion, to explain the VL distortionsthe only one for which the kerng is known [18]. The
[12,14,15]. These, however, were only partially successeerivation based on the Eilenberger theory is given, e.g.,
ful as the later data analysis has shown [11,12]. This i$n Ref. [16]:

not surprising since one could not expect the terms de- ji(k) = — [4me’N(0)T A}/ cla;(k)

signed to correct the GL energyearthe critical tempera- ,

ture T, to provide an adequate description of the SANS % £< ViVl > (1)
data taken as a rule far froffi. and from the upper criti- S Bo \B'? + (v - k)2/4

cal fieldH,,. Here,a = A + ¢oV0 /27, and ¢, is the flux quantum;
Being simpler than the GL, the London approachv is the Fermi velocity,A = Age’?, N(0) is the den-

has an advantage of applicability at dlls. However, sity of states at the Fermi level per one spifw =

the approach fails at distances of the ordgr the #T(2rn + 1) with an integern; {---) stands for the av-

coherence length. This shortcoming does not matter foerage over the Fermi surface. Furthgf, = Aj + h’w>

VL structures, provided the intervortex spacing exceedand B’ = By + /27 with 7 being the scattering time

the core size¢ substantially. Such a situation arises due to nonmagnetic impurities; summation is implied over
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repeated subscripts. Equation (1) is explicitly gauge inthe data. With the averages (5) we have
variant and holds for any anisotropic Fermi surface. _ _ _ _

Equation (1) yielddocal London relationj = a, if one = oo = 0395C, 2 = nyxyy = 0.0758C
disregards thd&-containing term in the denominator. We @)

) . T2
expand the denominator n powers ©f - k)* and keep Validity of the truncation procedure which led to
only the first order correction:

4 ) Eq. (2) central to our model, sets a restriction on the
—Wji - __z(mi—],l - Aznijlmklkm)aj~ (2) value. Indeed, since the major role in the VL problem
¢ A ’ belongs tok ~ 27 /ag with ay being the intervortex

Here 2 2 2, 2 spacing, the nonlocal correction in Eq. (2) is small if
1 _ 6m7e NOTAw) Z ! QmA/ag)*n < 1 orif
A2 3¢? 0>0 B(%B/ ' 2742
o vivy) C < ay/A” ~ He /B, (8)
mij- = (v2) (3) whereH, is the lower critical field.
42N (0)T A2 1 In experiments [12] on ¥Si, the field was applied in
Bijim = Te 0 (vivvv,) Z the (110) plane, which is the crystal symmetry plane (see

c? o BiB" Fig. 1 of Ref. [12]). We denote this plane asand look
We definedA so as to have the correct isotropic limit for VL's having (110) as a symmetry plane. Thus, the VL
andm;; to have a convenient property det; = 1. The  ynit cell is a rhombus with one of the diagonals along
tensors, symmetric in all indices, can also be written as jn the (110) plane. There are other symmetries in the four
L 3R, _AFYB0°(B) 7 available data sets with fields along [110], [111], [112],

ijlm 4(v2)A3 N2 Y, Y S BB and [001]; we will consider them case by case.

()] We now apply Eq. (2) to a vortex along To find the

The quantityy(T, ) was evaluated in Ref. [16]; in the field component:. (the only one needed for evaluating
clean limit v = 2/3 at T = 0. Scattering suppresses intervortex interactionpoh./4), we first invert Eq. (2)
v; in the dirty limit y — (rAo/k)> — 0, i.e., nonlocal to isolatea, and then use the flux quantization condition,
effects vanish. Thus; ~ ¢5/A2 ~ k 2inthe clean case curl a =h — ¢(28(r). We utilize the smallness of non-
and of the ordefvr/A)? for dirty materials. local corrections to obtain after straightforward algebra:

With # = 0, Eq. (2) is the standard L equation [19]. oK) bo
Being dependent on the shape of the Fermi surface, the :(K) = 272 1 4 > 7 ,
fourth-rank tensofi couples supercurrents with the crystal 14 A2+ ANk o+ Nyykss = 2Noykcky)
even in cubic materials which, within the local L theory, Nij = nijimkiky, k; = 0.

should behave isotropically. From now on, we focus on\te that for all cases of interest here, components of
the cubic case in whichn;; = &;;, whereasi in the a5 contain only even numbers ofs (and x’s) due to
crystal frameX,Y,Z has two independent components the symmetryy — —y. For a particular field orientation,
nxxxx and nyxyy; to evaluate these one needs Fermigne fas to transform from the crystal frame where it is
surface averages of products of Fermi yel_()C|t|es, ie., Onﬁiven by Eq. (7) to the frameyz with z along the vortex
turns to the band structure of the material in question. axes, and being situated in the (110) plane of the crystal.

_ For V;Si, the averages were obtained from full poten-yye il skip here details of these standard transformations
tial linearized augmented plane wave method [20] USingyrqviding only the results.

the local density approximation. The cubic Al5 lattice” The free energy density of a VL directed alonig
constant of \{Si of 4.72 A was used. For V, theszind

3d orbitals were treated as semicore states, for which ex- F = B2 Z h,(q)/87 o, (10)

tra local orbitals were included in the basis set [21]. We i

obtain ) " ) where B is the magnetic induction an#l, of Eq. (9) is
(v7) = 2.94 X 10 (cm/sec)”, taken at wave vectork = q forming a proper reciprocal
(v}) = 3.42 X 10°® (cm/seq*, 5) lattice [22]. The equilibrium VL at a giveH corresponds
_ " 4 to the minimum ofG = F — BH/47. Note that only

(vyvy) = 0.656 X 10~ (cm/seq” . for [112] caseBH # BH.
We can now evaluaté providedAo, A, andr are given. We start with H || [001]. In this case the vortex

Of these three, only the penetration depth is establishegystemxyz is rotated 45 relative to the crystal frame
reliably: A = 1060 A [12]. We then lump all these xyz: Mevex = Myyyy = (11 + 312) /2, iy = (1 — 12) /2.
parameters in one: The VL vectors arenb; + nb, with integersm,n; b; =

AL TL L) _ 3y 6y b(ESING: + §CO$B)). by = b(—RSiNB; + §eosBy); b is
ijtm (v2)2 4A%02 the side of the isosceles triangle, apg@, = B is the

whereC is to be determined from fitting one of the data apex angle:b = /¢¢/BsinB. The reciprocal lattice is
sets. We then use this value 6fto analyze the rest of ¢, = 7(m — n)/bsinB, g, = w(m + n)/bcosB;.
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The sum in Eg. (10) is formally convergent; seeG(90°); at a certainH = H; the minima merge into
Eq. (9). Sitill, our theory is valid outside the vortex core,a single minimum at 99 i.e., the 43-rotated square
and we have to introduce a cutoff at,x ~ 1/£. To  becomes stable. We finl; = 3T in V;Si; this is not a
avoid unphysical sensitivity of the sum to a choice ofreliable estimate since at fields that high, the first nonlocal
the summation domain, we introduce €x@g>£?) in the  corrections may not suffice.
summand, thus making the sum a smooth function of The situation just described is probably realized in
parameterg andB [23]. The minimization ofG is done  borocarbides where the #otated square VL is seen in
by randomly sampling variational parameters (Montelarge [001] fields in SANS [13,24,25], and in the scanning
Carlo). Positions of minima i6;(3) are not sensitive to tunneling [26]. Moreover, the small field decoration
a particular cutoff in the field range of interest here. experiments show a triangular VL [24] similar to what the

For the field H = 4020G along [001] (used in model predicts for ¥Si. More work is needed to evaluate
Ref. [12]) we take the experimental valyge= 58° and the transition fieldd; in these compounds.
vary the Gibbs energy relative ©; the sum in Eq. (10) is Analyzing data for other field orientations, it is conve-
cut takingé = A\/C/5 (for the clean casdw?y/4 =~ 5).  nient to write the denominator in Eq. (9) as
The minimum is achieved af = 4.83 X 1073. This ) 2 4 4 ) 2
value of C will be used in all the rest of data analyses. LH Xg" + Xngyq” + daray) (11)
Note thatH.,/B =~ 8 X 1072 and the condition (8) is d = Nypex + Nyyyy — ONyyyy -
satls_fled. CalpqlatlngG(ﬂ) for this field (1r|en'£at|on, One can verify that in the isotropic casé= 0: thus
we find two minima of the same depth gt= 58° and . . .
122°; see Fig. 1. The second minimum corresponds tod # 0 is responsible for the anisotropy.

; C ForH || [111], we findn,yy,, =n1/6 + ny/2, whiled =

the same VL rotated 90relative to that withs = 58°. 0. Thus,F takes the isotropic form and@ = 60° while the

This is expected since is the fourfold symmetry axis VL orientation within the crystal is arbitrary. Experiment

for this case. These two structures are seen in SANS e . . .
two coexisting domains [12]. Figure 1 shows that theiﬁz] shows/s = 60° with one of the triangle sides in (110)

square VL aligned with the crystal axes corresponds t(g)lane; the orlgntatlonal degener_acy of our mode| may.be
the maximum ofG. removed by higher order terms in the nonlocal expansion

The above analysis is based on (110) as a symmetlg) or by any other weak interaction [27].

plane for VL's. ForH || [001], one could also consider ForIf{ ” [112],;3 is not parallel tOHiI Thg .m'ia“?n'
VL's with the symmetry plane (100). We find local ment of the two, however, s very small, and in the lowest

- . . . order can be disregarded. We find.,, = (n; + n)/3
minima of G for the isosceles triangle as a half-unit oo, L=
cell with the base at [100] an@ = 6> or 116. The  andd = 18z — 7n)/12. The energyG is minimized

. by B8 shown in Fig. 2 for a few values df; the base of
maximum of G corresponds to the square VL rotated ; . = ) -
45° relative to the crystal. However, at fields less than the triangle is along [1f] as is seen in SANS [12]. We

certainH* (in this caseH* ~ 4 kG), all these structures &ind, however, that these VL’s can be9®tated with no

have higher energies than those discussed above. F tPange inG. It remains to be seen whether or not the

H > H*, the situation flips: The triangular VL with X rmﬁsi"glnlfgfn\}vge?;\y:: this :dige:r?éfilcy:- s —
a base at [100] becomes stable (while triangles basegd V2. 1f H is betweon 1 and 10 sz we obtain rlninima
at [110] become metastable). With the field further’ 2/ <

increasing, the angular distance between the minima 0?f G for the triangle bas@ at [001], or [10]; the first
F(B) drops along with the reduction in the value of IS seen in SANS. The calculategldepends o and is

5815 1.04 ——————— 57.47
. TR T I eTepeeepey—r O [112] D
: 1.02 o) 58.71
o -5.820 . Gg R
ha 1 1.00 b 4 60.00 ‘»
~— 4 L @
= [ ] g LA o
e -5.825 | - o A =
8 i X [100] 1 0.98 61.36 @
[=)] L A 3
i L A
2 -5.830 - 0.96 16 6278
(L] [ (101 A
-5.835 | ] 0.94 64.27
[ A
P | I T T W T 1 | I W T W W 1 L L i 0'92 : ' - - ' - " " : - * * ) ' * . * ! 65.84
-5.840 0 2 4 6 8 10
60 90 120 150 H (kG)

B (degrees) . .
FIG. 2. The side-to-base ratip/a (or the apex angle8) vs

FIG. 1. The Gibbs energy vs the apex angleshown in the applied fields along [112] (circles) and [110] (triangles). Solid
inset. markers are for the data, open ones are calculated.
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