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Nonlocal corrections to London equations are employed to describe a variety of vortex lattices s
through neutron scattering in cubic crystals of V3Si with large k. Within this model the observed
symmetries of vortex lattices and their coupling to the underlying crystal are reproduced. Predi
lattice structures are field dependent in agreement with the data. [S0031-9007(97)03649-1]
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The recently renewed interest in the vortex lattic
(VL) as reflecting on the magnetic structure of vortice
their interactions, and the symmetry of the underlyin
order parameter [1–9] prompted us to review a ric
pool of data on VL’s in conventional superconductor
The hexagonal VL (made of equilateral triangles)
seldom seen even in cubic materials. Only the lo
field decoration experiments (in which the intervorte
spacing exceeds the penetration depth) usually sh
this structure predicted by the Ginzburg-Landau (GL)
London (L) theories. VL’s seen in small angle neutro
scattering experiments (SANS) on cubic crystals a
distorted triangular (or square, in some situations) w
parameters depending on both temperature and app
magnetic field. Extensive data on cubic Nb, PbTl, an
PbBi are summarized by Schelten and Obst [10], a
by Christen et al. [11]. The latter group have also
studied V3Si, the cubic material with relatively large GL
parameterk [12]. Related to these are new SANS data o
borocarbides (e.g., ErNi2B2C) with the field along [001]
in which the square lattice is observed in high fields [13

Since the GL or L theories incorporate the cryst
anisotropy via the second rank mass tensormik , within
these approaches the cubic crystals should behave
isotropic, i.e., VL’s should always be hexagonal. A
tempts were made to incorporate the nonlocal effe
which correspond to higher order derivatives in the G
free energy expansion, to explain the VL distortion
[12,14,15]. These, however, were only partially succes
ful as the later data analysis has shown [11,12]. This
not surprising since one could not expect the terms d
signed to correct the GL energynear the critical tempera-
ture Tc to provide an adequate description of the SAN
data taken as a rule far fromTc and from the upper criti-
cal fieldHc2.

Being simpler than the GL, the London approac
has an advantage of applicability at allT ’s. However,
the approach fails at distances of the orderj, the
coherence length. This shortcoming does not matter
VL structures, provided the intervortex spacing excee
the core sizej substantially. Such a situation arise
0031-9007y97y79(4)y741(4)$10.00
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in materials with largek in fields well under theHc2.
Thus, the idea of developing the nonlocal corrections
the L theory for description of VL’s at lowT ’s is more
attractive than the similar idea within the GL framework

These corrections have recently been derived to addr
the problem of low-T magnetization in high-Tc materials
[16]. We reproduce here the main points of this wor
We then use the nonlocal corrections to analyze in det
the data [12] on VL’s in V3Si and show that our approach
not only predicts correctly all structures observed, b
provides the VL parameters and theirfield dependence
close to the observed experimentally.

The nonlocality in superconductors is caused by a fin
size j0 of Cooper pairs: The currentjsrd is determined
by the vector potentialA within a domain,j0 around
r [17]. Instead of local relations betweenj and A of
the GL or L approaches, the microscopic theory provid
an integral equation with a kernel̂Qsrd extending to
distances,j0; in Fourier space this relation is of the
form jskd ­ Q̂skdAskd [18]. In the GL domain where
jsT d ¿ j0, or far from the vortex cores, the nonloca
corrections vanish.

Deriving the L equations from the microscopic theory
one assumes that the currents small relative to t
depairing value do not suppress the order parame
jDj. Only the phaseu changes in space and provide
the flux quantization. In fact, the small current case
the only one for which the kernel̂Q is known [18]. The
derivation based on the Eilenberger theory is given, e.
in Ref. [16]:

jiskd ­ 2 f4pe2Ns0dTD2
0ycgalskd

3
X

v.0

b0

b
2
0

ø
yiyl

b0 2 1 h̄2sv ? kd2y4

¿
. (1)

Here, a ­ A 1 f0=uy2p, andf0 is the flux quantum;
v is the Fermi velocity,D ­ D0eiu , Ns0d is the den-
sity of states at the Fermi level per one spin;h̄v ­
pT s2n 1 1d with an integern; k· · ·l stands for the av-
erage over the Fermi surface. Further,b

2
0 ­ D

2
0 1 h̄2v2

and b0 ­ b0 1 h̄y2t with t being the scattering time
due to nonmagnetic impurities; summation is implied ov
© 1997 The American Physical Society 741
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repeated subscripts. Equation (1) is explicitly gauge
variant and holds for any anisotropic Fermi surface.

Equation (1) yieldslocal London relationj ~ a, if one
disregards thek-containing term in the denominator. W
expand the denominator in powers ofsv ? kd2 and keep
only the first order correction:

4p

c
ji ­ 2

1
l2

sm21
ij 2 l2nijlmklkmdaj . (2)

Here
1

l2
­

16p2e2Ns0dTD
2
0ky2l

3c2

X
v.0

1

b
2
0b0

,

m21
ij ­

3kyiyjl
ky2l

, (3)

nijlm ­
4p2e2h̄2Ns0dTD

2
0

c2
kyiyjylyml

X
v.0

1

b
2
0b0 3

.

We definedl so as to have the correct isotropic lim
andmij to have a convenient property detmij ­ 1. The
tensorn̂, symmetric in all indices, can also be written as

nijlm ­
3h̄2kyiyjylyml

4ky2lD2
0l2

g, g ­
D

2
0
P

b
22
0 sb0d23P

b
22
0 sb0d21

.

(4)
The quantitygsT , td was evaluated in Ref. [16]; in the
clean limit g ­ 2y3 at T ­ 0. Scattering suppresse
g; in the dirty limit g ! stD0yh̄d2 ! 0, i.e., nonlocal
effects vanish. Thus,n , j

2
0yl2 , k22 in the clean case

and of the ordersytyld2 for dirty materials.
With n̂ ­ 0, Eq. (2) is the standard L equation [19

Being dependent on the shape of the Fermi surface,
fourth-rank tensor̂n couples supercurrents with the cryst
even in cubic materials which, within the local L theor
should behave isotropically. From now on, we focus
the cubic case in whichmij ­ dij, whereasn̂ in the
crystal frameX, Y , Z has two independent componen
nXXXX and nXXYY ; to evaluate these one needs Fer
surface averages of products of Fermi velocities, i.e., o
turns to the band structure of the material in question.

For V3Si, the averages were obtained from full pote
tial linearized augmented plane wave method [20] us
the local density approximation. The cubic A15 lattic
constant of V3Si of 4.72 Å was used. For V, the 3s and
3d orbitals were treated as semicore states, for which
tra local orbitals were included in the basis set [21]. W
obtain

ky2l ­ 2.94 3 1014 scmysecd2 ,

ky4
X l ­ 3.42 3 1028 scmysecd4 ,

ky2
Xy2

Y l ­ 0.656 3 1028 scmysecd4 .

(5)

We can now evaluatên providedD0, l, andt are given.
Of these three, only the penetration depth is establis
reliably: l ­ 1060 Å [12]. We then lump all these
parameters in one:

nijlm ­ C
kyiyjylyml

ky2l2 , C ­
3h̄2ky2lg

4D
2
0l2

, (6)

whereC is to be determined from fitting one of the da
sets. We then use this value ofC to analyze the rest of
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the data. With the averages (5) we have

n1 ­ nXXXX ­ 0.395C, n2 ­ nXXYY ­ 0.0758C .

(7)

Validity of the truncation procedure which led to
Eq. (2) central to our model, sets a restriction on theC
value. Indeed, since the major role in the VL problem
belongs to k , 2pya0 with a0 being the intervortex
spacing, the nonlocal correction in Eq. (2) is small
s2plya0d2n ø 1 or if

C ø a2
0yl2 , Hc1yB , (8)

whereHc1 is the lower critical field.
In experiments [12] on V3Si, the field was applied in

the (110) plane, which is the crystal symmetry plane (s
Fig. 1 of Ref. [12]). We denote this plane asxz and look
for VL’s having (110) as a symmetry plane. Thus, the V
unit cell is a rhombus with one of the diagonals alongx
in the (110) plane. There are other symmetries in the fo
available data sets with fields along [110], [111], [112
and [001]; we will consider them case by case.

We now apply Eq. (2) to a vortex alongz. To find the
field componenthz (the only one needed for evaluating
intervortex interactionf0hzy4p), we first invert Eq. (2)
to isolatea, and then use the flux quantization condition
curl a ­ h 2 f0ẑdsrd. We utilize the smallness of non-
local corrections to obtain after straightforward algebra:

hzskd ­
f0

1 1 l2k2 1 l4sNxxk2
y 1 Nyyk2

x 2 2Nxykxkyd
,

Nij ­ nijlmklkm , kz ­ 0 .
(9)

Note that for all cases of interest here, components on̂
can contain only even numbers ofy’s (and x’s) due to
the symmetryy ! 2y. For a particular field orientation,
one has to transform̂n from the crystal frame where it is
given by Eq. (7) to the framexyz with z along the vortex
axes, andx being situated in the (110) plane of the crysta
We will skip here details of these standard transformatio
providing only the results.

The free energy density of a VL directed alongz is

F ­ B2
X
q

hzsqdy8pf0 , (10)

where B is the magnetic induction andhz of Eq. (9) is
taken at wave vectorsk ­ q forming a proper reciprocal
lattice [22]. The equilibrium VL at a givenH corresponds
to the minimum ofG ­ F 2 BHy4p . Note that only
for [112] caseBH fi BH.

We start with H k [001]. In this case the vortex
systemxyz is rotated 45± relative to the crystal frame
XYZ: nxxxx ­ nyyyy ­ sn1 1 3n2dy2, nxxyy ­ sn1 2 n2dy2.
The VL vectors aremb1 1 nb2 with integersm, n; b1 ­
bsx̂sinb1 1 ŷcosb1d, b2 ­ bs2x̂sinb1 1 ŷcosb1d; b is
the side of the isosceles triangle, and2b1 ­ b is the
apex angle:b ­

p
f0yBsinb. The reciprocal lattice is

qx ­ psm 2 ndybsinb1, qy ­ psm 1 ndybcosb1.
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The sum in Eq. (10) is formally convergent; se
Eq. (9). Still, our theory is valid outside the vortex cor
and we have to introduce a cutoff atqmax , 1yj. To
avoid unphysical sensitivity of the sum to a choice
the summation domain, we introduce exps2q2j2d in the
summand, thus making the sum a smooth function
parametersb andB [23]. The minimization ofG is done
by randomly sampling variational parameters (Mon
Carlo). Positions of minima inGsbd are not sensitive to
a particular cutoff in the field range of interest here.

For the field H ­ 4020 G along [001] (used in
Ref. [12]) we take the experimental valueb ­ 58± and
vary the Gibbs energy relative toC; the sum in Eq. (10) is
cut takingj ­ l

p
Cy5 (for the clean case3p2gy4 ø 5).

The minimum is achieved atC ­ 4.83 3 1023. This
value of C will be used in all the rest of data analyse
Note that Hc1yB ø 8 3 1022 and the condition (8) is
satisfied. CalculatingGsbd for this field orientation,
we find two minima of the same depth atb ­ 58± and
122±; see Fig. 1. The second minimum corresponds
the same VL rotated 90± relative to that withb ­ 58±.
This is expected sincêz is the fourfold symmetry axis
for this case. These two structures are seen in SANS
two coexisting domains [12]. Figure 1 shows that t
square VL aligned with the crystal axes corresponds
the maximum ofG.

The above analysis is based on (110) as a symm
plane for VL’s. ForH k f001g, one could also conside
VL’s with the symmetry plane (100). We find loca
minima of G for the isosceles triangle as a half-un
cell with the base at [100] andb ­ 62± or 118±. The
maximum of G corresponds to the square VL rotate
45± relative to the crystal. However, at fields less than
certainHp (in this caseHp , 4 kG), all these structures
have higher energies than those discussed above.
H . Hp, the situation flips: The triangular VL with
a base at [100] becomes stable (while triangles ba
at [110] become metastable). With the field furth
increasing, the angular distance between the minima
Fsbd drops along with the reduction in the value o

FIG. 1. The Gibbs energy vs the apex angleb shown in the
inset.
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G(90±); at a certainH ­ Hs the minima merge into
a single minimum at 90±, i.e., the 45±-rotated square
becomes stable. We findHs ø 3 T in V3Si; this is not a
reliable estimate since at fields that high, the first nonloc
corrections may not suffice.

The situation just described is probably realized
borocarbides where the 45±-rotated square VL is seen in
large [001] fields in SANS [13,24,25], and in the scannin
tunneling [26]. Moreover, the small field decoratio
experiments show a triangular VL [24] similar to what th
model predicts for V3Si. More work is needed to evaluate
the transition fieldHs in these compounds.

Analyzing data for other field orientations, it is conve
nient to write the denominator in Eq. (9) as

1 1 l2q2 1 l4snxxyyq4 1 dq2
xq2

yd ,

d ­ nxxxx 1 nyyyy 2 6nxxyy .
(11)

One can verify that in the isotropic cased ­ 0; thus
d fi 0 is responsible for the anisotropy.

For H k f111g, we findnxxyy ­ n1y6 1 n2y2, while d ­
0. Thus,F takes the isotropic form andb ­ 60± while the
VL orientation within the crystal is arbitrary. Experimen
[12] showsb ­ 60± with one of the triangle sides in (110
plane; the orientational degeneracy of our model may
removed by higher order terms in the nonlocal expans
(2) or by any other weak interaction [27].

For H k f112g, B is not parallel toH. The misalign-
ment of the two, however, is very small, and in the lowe
order can be disregarded. We findnxxyy ­ sn1 1 n2dy3
and d ­ s18n2 2 7n1dy12. The energyG is minimized
by b shown in Fig. 2 for a few values ofH; the base of
the triangle is along [111] as is seen in SANS [12]. We
find, however, that these VL’s can be 90±-rotated with no
change inG. It remains to be seen whether or not th
B, H misalignment removes this degeneracy.

For H k f110g, we havenxxyy ­ n2 and d ­ 3sn1 2

3n2dy2. If H is between 1 and 10 kG we obtain minim
of G for the triangle basea at [001], or [110]; the first
is seen in SANS. The calculatedb depends onH and is

FIG. 2. The side-to-base ratiobya (or the apex angleb) vs
applied fields along [112] (circles) and [110] (triangles). Sol
markers are for the data, open ones are calculated.
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shown in Fig. 2. AsH decreases,b ! 60± as expected
since the nonlocal effects vanish at large distances.

For the data shown in Fig. 2 the disagreement betwe
the theory and the data is less than 2%. The misma
in high fields might be due to the increasing sensitivit
of the results to a particular cutoff, which is weak in
fields under,10 kG. Still, the agreement is remarkable
Forcing only one data point to the theory, we reproduc
actual geometries of VL’s and their field dependenc
Thus the nonlocal effects indeed play an important role
forming VL’s in V3Si [28]. The method, however, should
be justified in each application. In particular, one shou
check thatk is not close to one. Otherwise, the domai
of applied fields for which the intervotex spacinga0 ¿ j

shrinks to a narrow region nearHc1, i.e., there is no room
for any version of the L approach.

One should also keep in mind that magnetoelas
interactions can be relevant for VL’s. These arise du
to a small difference in specific volumes of the norma
material in vortex cores and the superconducting phase
the rest of the sample (see [27], and references there
We estimated that for V3Si these interactions can be
disregarded relative to nonlocal corrections to the fre
energy.

Finally, we comment on efforts to show that VL’s
observed in YBCO are due to unconventional symmetri
of the order parameter. For the field alongĉ, the VL
consists of isosceles triangles withb . 73± 77± [3,4].
This structure can be reproduced using the GL theo
for the dx22y2 order parameter [2,6–9]. However, a
the variety of VL’s observed in Nb [10,11], PbTl, PbB
[10], and V3Si discussed here, clearly demonstrates, it
difficult to establish a simple relation between the orde
parameter symmetry and a particular VL structure sin
the latter is sensitive to the temperature, field value, a
orientation even ins-wave materials.

In conclusion, we have shown that nonlocal correction
to London equations describe correctly the SANS data
VL’s in cubic V3Si. For the first time, it is shown that the
VL structure is field dependent. The work can be applie
to recent SANS and scanning tunneling data on VL’s
borocarbides [13,25,26].
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