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Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition
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(Received 6 June 1995; revised manuscript received 7 April 1997)

The nearest-neighbor level spacing distribution is numerically investigated by directly diagonalizing
disordered Anderson Hamiltonians for systems of sizes up to100 3 100 3 100 lattice sites. The
scaling behavior of the level statistics is examined for large spacings near the delocalization-localization
transition and the correlation length exponent is found. By using high-precision calculations we
conjecture a new interpolation of the critical cumulative probability, which has size-independent
asymptotic form lnIssd ~ 2sa with a  1.0 6 0.1. [S0031-9007(97)03719-8]

PACS numbers: 71.30.+h, 05.60.+w, 72.15.Rn
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The statistical fluctuations in energy spectra of dis
dered quantum systems attract at present much atten
[1–5]. It is known that by increasing the fluctuations
a random potential the one-electron states undergo a
calization transition, which is the origin of the Anderso
metal-insulator transition (MIT) [6]. The influence of th
disorder on the wave functions is reflected by the mut
correlations between the corresponding energy levels
that the statistics of energy levels is sensitive to the M
In the metallic limit the statistics of energy spectra can
described by the random-matrix theory (RMT) develop
by Wigner and Dyson [7,8]. This was shown by solvin
the zero-mode nonlinears model using the supersymme
ric formalism [9]. Later, perturbative corrections to th
two-level correlation function obtained in the RMT wer
evaluated in the diffusive regime by the impurity diagra
technique [10]. In the insulating regime, when the deg
of disorderW is much larger than the critical valueWc,
the energy levels of the strongly localized eigenstates fl
tuate as independent random variables.

An important quantity for analyzing the spectral flu
tuations is the nearest-neighbor level spacing distribut
Pssd. It contains information about all of then-level
correlations. In the metallic regimePssd is very close
to the Wigner surmisePW ssd  psy2 exps2ps2y4d [11]
(s is measured in units of the mean level spacingD).
In the localized regime the spacings are distributed
cording to the Poisson law,PPssd  exps2sd, because
the levels are completely uncorrelated. The study of
crossover ofPssd between the Wigner and the Poissoni
limits which accompanies the disorder-induced MIT in
three-dimensional system (3D) was started in Ref. [1
and became the subject of several subsequent inves
tions [1,2,5,13,14].

It was suggested earlier [1] thatPssd exhibits critical be-
havior and should be size independent at the MIT. Inv
tigating the finite-size scaling properties ofPssd provides
not only an alternative method for locating the transiti
[2], but allows one also to determine the critical beha
ior of the correlation length [14]. A technical advantag
of the method is that one needs to compute only ene
spectra and not eigenfunctions and/or the conductivity.
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the other hand, a large number of realizations of the ra
dom potential has to be considered. In comparison w
the well-established transfer-matrix method [15] by whic
one approaches the MIT from the localized side, the lev
statistics procedure starts from the metallic regime. Th
the two methods can be considered to provide complem
tary information about the critical region.

The suggestion of the existence of a thirduniversal
level statistics at the MIT excited considerable interest
the explicit form of the critical spacing distribution. From
general considerations for the orthogonal symmetry
Pssd ~ s at smalls. For larges, essentially two different
analytical expressions were proposed [16]. One of the
[1,12] assumes thatPcssd is a Poissonian fors ¿ 1,
since at the critical point the Thouless energy, which
a measure of the number of energy levels that contrib
to the average conductance of the system, is of order
D, while level repulsion is important only for smalls.

A different asymptotic form,Pcssd ~ exps2Asad, was
proposed [4], by using an analogy between the seque
of energy levels and a classical one-dimensional gas
interacting fictitious particles. Herea is given by the
dimensionalityd and the localization length exponentn,

a  1 1 sdnd21. (1)

The result is obtained in the Gibbs model by assuming
power laws22a for the pairwise interaction between th
particles [3]. The latter distribution decays faster tha
the Poissonian (a  1), but slower than the Wigner
surmise (a  2). Several numerical calculations for th
3D Anderson model were recently performed [5,17]
order to analyzePcssd. The results were found to be
consistent with the latter of the above suggestions w
an exponenta ø 1.2 1.3 (n ø 1.5). However, since the
rounding errors in the calculations for larges are such
thata  1 cannot be completely ruled out, the asymptot
form of Pcssd is still an open question, and the subject o
presently ongoing and controversial discussions. In t
Letter we present the results of detailed high-precisi
numerical investigations of the critical level spacin
distribution. Our findings solve the above controvers
Preliminary results have been published previously [18
© 1997 The American Physical Society 717
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By diagonalizing the Anderson Hamiltonian with
Lanczos algorithm [14] specifically modified for system
containing up to106 lattice sites, which were not achieve
in previous works, we examined both the critical behav
and the finite-size scaling properties of the integra
probability distribution of neighboring spacingsIssd. Our
main result is that the asymptotic form of criticalIcssd
and, therefore,Pcssd at large s is very close to a
Poissonian decay, as the leading term, thus confirm
the ideas of [1,12]. In addition, by using the siz
independence ofIcssd at the MIT and investigating the
scaling ofIssd with the system sizesL andW , we estimate
the correlation length exponentn.

The Anderson model [19] is defined byH P
n ´nay

n an 1
P

nfimsay
n am 1 c.c.d, whereay

n (an) is the
creation (annihilation) operator of an electron at a s
n, with m denoting the nearest neighbors ofn. The site
energieś n are measured in units of the overlap integ
between adjacent sites. They are independent ran
variables that are distributed around´  0 according to a
box distribution of widthW . A simple cubic lattice with
periodic boundary conditions was used. We compu
the electron spectra of cubes of linear size ranging fr
L  5 to 100 for various W . It is known from the
transfer-matrix method [20] that in the center of the ba
(´  0) Wc ø 16.4. The spectrum was properly “un
folded” by fitting the integrated density of states arou
´  0 to polynomial splines. The numerical results at t
MIT are summarized in Table I. It should be noted th
the numerical diagonalization of giant sparse matrices
order of105 106 is highly nontrivial.

Figure 1 showsPssd calculated at the MIT. As
expected, it isL independent. To cover the who
range of spacings, the interpolation formulaPAKLssd 
Bs exps2Asad has been proposed in [4]. Becau
of normalization A  fGs3yadyGs2yadga and B 
aA2yayGs2yad. The best fit using thex2 criterion in
the interval 0 , s , 4 yields a  1.48 6 0.08 with a
confidence level 0.95. The fitted exponenta is markedly
larger than that given by (1). Fors . 3 one observes an
718
TABLE I. Numerical parameters for various cube sizesL at Wc  16.4. M: number of
samples;Ns: total number of spacings;D: mean level spacing;r  sDL3d21: density of states;
a andAc: quantities of Eq. (2). All levels lie within the energy intervaljEj , 4.45.

L M Ns D s´  0d r 3 102 Ac a

5 3 3 105 18 610 321 1.42 3 1021 5.62 1.90 1.01 (0.02)
8 4 3 103 1 016 790 3.47 3 1022 5.63 1.89 0.95 (0.06)

12 3 3 103 2 576 306 1.03 3 1022 5.62 1.89 0.99 (0.05)
16 5 3 102 1 017 902 4.34 3 1023 5.62 1.88 0.98 (0.06)
20 25 99 493 2.23 3 1023 5.61 1.91 1.00 (0.10)
28 10 109 075 8.11 3 1024 5.62 1.87 1.07 (0.10)
32 10 163 097 5.40 3 1024 5.62 1.89 0.99 (0.08)
40 5 158 658 2.77 3 1024 5.62 1.91 0.97 (0.09)
64 2 260 020 6.79 3 1025 5.62 1.88 1.04 (0.09)
80 1 254 321 3.47 3 1025 5.62 1.92 1.02 (0.06)

100a 1 99 360 1.77 3 1025 5.63 1.88 0.95 (0.11)

aEnergy interval isjEj , 0.89.
s

r
d

ng
e

te

l
om

ed
m

d

d
e
t
of

e

increasing deviation betweenPAKLssd and the computed
histogram. This shows that fitting nears , 1 does not
provide reliable information abouta, because the expo-
nential tail of Pssd contributes to the relative accurac
only with a very small weight. Therefore it is imperativ
to investigate the asymptotic behavior at larges, not
including data from the region0 , s & 2.

In what follows, we consider the cumulative leve
spacing distribution functionIssd ;

R`
s Pss0d ds0. It gives

the probability to find neighboring energy levels with
separationE . sD. The integration does not change th
asymptotic exponential behavior ofPssd. Since s . 0,
Is0d  1, and by normalization to the total number o
spacings in a given interval,

R`
0 Issd ds  1. The Wigner

surmise [21] and the Poisson distribution yieldIW ssd 
exps2ps2y4d and IPssd  exps2sd, respectively. The
numerical evaluation ofIssd is similar to that of the
density of states in unfolding the spectrum. By arrangi
the spacings in a descending sequence one can v
accurately construct the histograms ofIssd [2].

Using the common statistical hypothesis at larges

ln Icssd  2Acsa , (2)

we calculatedAc anda for variousL (see Table I). Inde-
pendent ofL the result isa  1.0 6 0.1. The numeri-
cal data of lnIcssd shown in Fig. 2 are better described b
a linear law for s . 3, so thatIcssd ~ exps2Acsd with
Ac  1.9 6 0.1. This is similar to the insulating regime
although the decay rateAc is larger than unity due to
the level repulsion. The power law with the expone
a ø 1.2, which was recently obtained [17] by an analy
sis of the shape ofPssd in the range0 , s , 5 for system
sizesL # 21, deviates from our results fors * 4.

The linear asymptotic behavior of lnIcssd is in con-
trast to the power law witha ø 1.31 obtained numer-
ically [5] for smaller systemsL # 12. The reason for
this discrepancy is the following. The energy interv
E considered in [5] is so narrow that it contains only te
spacings on the average, that results in a cutoff ofPcssd at
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FIG. 1. Level spacing distributionPssd for various system
sizes at the critical disorderWc. Dash-dotted line isPAKLssd.
Full line is derivative ofIcssd from interpolation formula (3).

s ø 10D. Thus, some fraction of the spacingss , 10D

is not taken into account, causing the faster decay
Pcssd. In our calculations the interval is wide enoug
covering approximately half of all of the eigenvalue
However, such a choice ofE does not lead to the un
desirable mixture of the extended and the localized sta
This is due to a peculiarity of the box distribution of th
site energieś n. It follows from the localization phase
diagram hWc, Ecj [15,22], that the critical disorderWc

is almost independent of the energy whenjEcj , 6. In
order to investigate how the width of the energy inte
val influences the level statistics, we calculatedIssd for
EyD  102, 103 and104, provided that all levels satisfy
the critical conditionL , js´d ~ j´yEc 2 1j2n. The re-
sults were practically the same within the statistical unc

FIG. 2. Critical probability of neighboring spacingsIssd.
Solid line is Eq. (2) witha  1. Dash-dotted line is the powe
law with a  1.24 from Eq. (1). Dashed and dotted lines a
IW ssd andIPssd, respectively.
of
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tainties. This implies the equivalence of averaging ov
the spectrum and over the random potential. Indeed, d
to diminishing the spacing with the sizeD ~ L3, the aver-
aging for smaller cubes is performed over many sampl
while for our largest systemsL  80 and100 a single
realization without ensemble averaging is even sufficie
to get similar distributions with comparable precision
For numerically describing a crossover between small a
larges, we propose an explicit form of the new interpola
tion function

Icssd  expfm 2

q
m2 1 sAcsd2g (3)

with a coefficientm ø 2.21. Although we do not pro-
vide a rigorous analytical proof, it gives the excellent fi
all over the range of the computed spacings. The cor
spondingPssd shown in Fig. 1 fulfills the both normaliza-
tion conditions.

To study the finite-size scaling behavior ofIssd for
large s, we extended the calculations to other degrees
the disorderW close toWc for various system sizes. The
calculations were performed for an ensemble of differe
samples. The number of samples for each given pair
L and W was chosen such thatNs . 105 spacings were
obtained. We have also carefully checked the sensitiv
of the results to the number of realizations. No chan
was observed within the error bars when increasing
system size on the expense of the number of realizati
and vice versa. By increasingW the spacing distribution
for fixed L changes continuously fromIW ssd to IPssd
(Fig. 3). The steepness of the crossover depends onL.
For larger sizesIssd changes faster between the tw
limiting regimes. AtWc . 16.4 the spacing distribution
has almost the same asymptotic form for allL from 5 to
100. This reflects the universality of the level statistic
exactly at the MIT [1].

For finite L the distributionIssd exhibits scaling in the
vicinity of Wc. Within the critical region,L , jsW d, it
is reasonable to assume that the linear slope of lnIssd is
governed by the one-parameter scaling law,AsW , Ld 
ffLyjsW dg. Figure 4 shows the disorder dependence

FIG. 3. ProbabilityIssd for L  6 and28 at W  12, 14, 15,
16, 16.4, 17, 18, and 20 shown consecutively from the left
the right. Dashed (dotted) line is the Wigner (Poisson) limit.
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FIG. 4. Scaling variableA as a function of the disorderW for
different L, showing critical behavior near the MIT. Inset: th
one-parameter dependence ofA on LyjsW d.

A near the critical point for variousL. AsWcd does not
depend onL. By introducing a scaling parameter, th
correlation lengthjsW d [14,15], we found a common
scaling curve consisting of two branches correspond
to the delocalized and localized regimes forA . Ac and
A , Ac, respectively, as shown in the inset of Fig. 4. Th
critical exponentn was determined in a similar way a
done previously [14], where only the small-s part of Pssd
was used. We foundn  1.4 6 0.15 in agreement with
the result obtained earlier by completely different metho
[2,15,20].

In conclusion, we present the first large-scale nume
cal results on the statistics of the energy levels near
disorder-induced MIT for systems of sizes up toL3 
1003 sites. A comparative analysis with results obtaine
from various analytical approaches and other numeri
studies is performed. At the critical point the asymp
totic universal probability of energy level spacings has
Poisson-like formIcssd ~ exps2Acsd. We believe that the
simple exponential asymptotics of the critical level spaci
distributions are valid not only for the orthogonal symm
try (with spinless electrons and without magnetic field
but also for other universality classes: the unitary (in t
presence of the magnetic field) and the symplectic (in t
presence of spin-orbit coupling) classes. Recent compu
simulations [23] corroborate that the decay rateAc is al-
most insensitive to the fundamental symmetry. Howev
it could depend on the physical dimensionality. Finall
we have determined the influence of the disorder of t
system on the exponential tail ofIssd, and constructed nu-
merically the corresponding scaling function. The critic
exponent of the correlation length was calculated,n ø 1.4.
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