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Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition
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The nearest-neighbor level spacing distribution is numerically investigated by directly diagonalizing
disordered Anderson Hamiltonians for systems of sizes upOfib X 100 X 100 lattice sites. The
scaling behavior of the level statistics is examined for large spacings near the delocalization-localization
transition and the correlation length exponent is found. By using high-precision calculations we
conjecture a new interpolation of the critical cumulative probability, which has size-independent
asymptotic form In'(s) «« —s* with @« = 1.0 = 0.1.  [S0031-9007(97)03719-8]

PACS numbers: 71.30.+h, 05.60.+w, 72.15.Rn

The statistical fluctuations in energy spectra of disorthe other hand, a large number of realizations of the ran-
dered quantum systems attract at present much attentialom potential has to be considered. In comparison with
[L-5]. Itis known that by increasing the fluctuations of the well-established transfer-matrix method [15] by which
a random potential the one-electron states undergo a l@ne approaches the MIT from the localized side, the level-
calization transition, which is the origin of the Anderson statistics procedure starts from the metallic regime. Thus,
metal-insulator transition (MIT) [6]. The influence of the the two methods can be considered to provide complemen-
disorder on the wave functions is reflected by the mutualary information about the critical region.
correlations between the corresponding energy levels, so The suggestion of the existence of a thirdiversal
that the statistics of energy levels is sensitive to the MITlevel statistics at the MIT excited considerable interest in
In the metallic limit the statistics of energy spectra can behe explicit form of the critical spacing distribution. From
described by the random-matrix theory (RMT) developedyeneral considerations for the orthogonal symmetry [8]
by Wigner and Dyson [7,8]. This was shown by solving P(s) o s at smalls. For larges, essentially two different
the zero-mode nonlinear model using the supersymmet- analytical expressions were proposed [16]. One of them
ric formalism [9]. Later, perturbative corrections to the [1,12] assumes thaP.(s) is a Poissonian fors > 1,
two-level correlation function obtained in the RMT were since at the critical point the Thouless energy, which is
evaluated in the diffusive regime by the impurity diagrama measure of the number of energy levels that contribute
technique [10]. In the insulating regime, when the degre¢o the average conductance of the system, is of order of
of disorderW is much larger than the critical vall&., A, while level repulsion is important only for small
the energy levels of the strongly localized eigenstates fluc- A different asymptotic formp.(s) o« exp(—As®), was
tuate as independent random variables. proposed [4], by using an analogy between the sequence

An important quantity for analyzing the spectral fluc- of energy levels and a classical one-dimensional gas of
tuations is the nearest-neighbor level spacing distributiomteracting fictitious particles. Here is given by the
P(s). It contains information about all of the-level dimensionalityd and the localization length exponent
correlations. In the metallic regim&(s) is very close — 1+ (dv)! 1
to the Wigner surmis@y (s) = 7s/2 exp(—s2/4) [11] @ v) o (1)
(s is measured in units of the mean level spacihy  The result is obtained in the Gibbs model by assuming the
In the localized regime the spacings are distributed acpower laws>~* for the pairwise interaction between the
cording to the Poisson lawPp(s) = exp(—s), because particles [3]. The latter distribution decays faster than
the levels are completely uncorrelated. The study of thehe Poissonian « = 1), but slower than the Wigner
crossover ofP(s) between the Wigner and the Poissoniansurmise & = 2). Several numerical calculations for the
limits which accompanies the disorder-induced MIT in a3D Anderson model were recently performed [5,17] in
three-dimensional system (3D) was started in Ref. [12brder to analyzeP.(s). The results were found to be
and became the subject of several subsequent investigeensistent with the latter of the above suggestions with
tions [1,2,5,13,14]. an exponentr = 1.2-1.3 (v = 1.5). However, since the

It was suggested earlier [1] thBfs) exhibits critical be-  rounding errors in the calculations for largeare such
havior and should be size independent at the MIT. Investhata = 1 cannot be completely ruled out, the asymptotic
tigating the finite-size scaling properties B{s) provides form of P.(s) is still an open question, and the subject of
not only an alternative method for locating the transitionpresently ongoing and controversial discussions. In this
[2], but allows one also to determine the critical behav-Letter we present the results of detailed high-precision
ior of the correlation length [14]. A technical advantagenumerical investigations of the critical level spacing
of the method is that one needs to compute only energglistribution. Our findings solve the above controversy.
spectra and not eigenfunctions and/or the conductivity. Oreliminary results have been published previously [18].
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By diagonalizing the Anderson Hamiltonian with a increasing deviation betweeP,; (s) and the computed
Lanczos algorithm [14] specifically modified for systemshistogram. This shows that fitting near~ 1 does not
containing up tal0° lattice sites, which were not achieved provide reliable information about, because the expo-
in previous works, we examined both the critical behaviomential tail of P(s) contributes to the relative accuracy
and the finite-size scaling properties of the integratednly with a very small weight. Therefore it is imperative
probability distribution of neighboring spacing&). Our  to investigate the asymptotic behavior at large not
main result is that the asymptotic form of critichl(s)  including data from the regiof < s < 2.
and, therefore,P.(s) at large s is very close to a In what follows, we consider the cumulative level
Poissonian decay, as the leading term, thus confirmingpacing distribution functiofi(s) = [ P(s')ds’. It gives
the ideas of [1,12]. In addition, by using the sizethe probability to find neighboring energy levels with a
independence of.(s) at the MIT and investigating the separationE > sA. The integration does not change the
scaling of/(s) with the system sizes andW, we estimate asymptotic exponential behavior &f(s). Sinces > 0,
the correlation length exponent 1(0) = 1, and by normalization to the total number of

The Anderson model [19] is defined by =  spacings in a given interval, I(s)ds = 1. The Wigner
S.enata, + Y, .(ata, + c.c), wherea! (a,) is the surmise [21] and the Poisson distribution yidigl(s) =
creation (annihilation) operator of an electron at a siteexp(—7s>/4) and Ip(s) = exp(—s), respectively. The
n, with m denoting the nearest neighborssof The site  numerical evaluation of/(s) is similar to that of the
energiese,, are measured in units of the overlap integraldensity of states in unfolding the spectrum. By arranging
between adjacent sites. They are independent randothe spacings in a descending sequence one can very
variables that are distributed arouad= 0 according to a accurately construct the histograms/éf) [2].

box distribution of widthw. A simple cubic lattice with Using the common statistical hypothesis at lasge
periodic boundary conditions was used. We computed
the electron spectra of cubes of linear size ranging from Inl.(s) = —Acs“, 2

L =51to 100 for various W. It is known from the
transfer-matrix method [20] that in the center of the bandwve calculatedd. and « for variousL (see Table I). Inde-
(e =0) W, = 16.4. The spectrum was properly “un- pendent ofL the result isa = 1.0 = 0.1. The numeri-
folded” by fitting the integrated density of states aroundcal data of Inl.(s) shown in Fig. 2 are better described by
e = 0 to polynomial splines. The numerical results at thea linear law for s > 3, so thatl.(s) « exp(—A.s) with
MIT are summarized in Table I. It should be noted thatA. = 1.9 = 0.1. This is similar to the insulating regime,
the numerical diagonalization of giant sparse matrices oélthough the decay rate. is larger than unity due to
order of 10°-10° is highly nontrivial. the level repulsion. The power law with the exponent
Figure 1 showsP(s) calculated at the MIT. As « = 1.2, which was recently obtained [17] by an analy-
expected, it isL independent. To cover the whole sis of the shape a?(s) in the range) < s < 5 for system

range of spacings, the interpolation formutak, (s) =  sizesL = 21, deviates from our results far = 4.
Bsexp(—As®) has been proposed in [4]. Because The linear asymptotic behavior of Ip(s) is in con-
of normalization A = [I'3/a)/T'(2/a)]* and B =  trast to the power law withw = 1.31 obtained numer-

aA¥®/T'(2/a). The best fit using thee? criterion in ically [5] for smaller systemd. < 12. The reason for
the interval0 < s < 4 yields o = 1.48 = 0.08 with a  this discrepancy is the following. The energy interval
confidence level 0.95. The fitted exponents markedly  E considered in [5] is so narrow that it contains only ten
larger than that given by (1). Fer> 3 one observes an spacings on the average, that results in a cutoff 4f) at

TABLE I. Numerical parameters for various cube sizesat W, = 16.4. M: number of
samplesV,: total number of spacinggs: mean level spacingy = (AL?)~': density of states;
a andA.: quantities of Eq. (2). All levels lie within the energy intenjal| < 4.45.

L M N; A (e =0) p X 10? A, a

5 3 %X 10° 18610321  1.42 X 107! 5.62 1.90 1.01 (0.02)

8 4 X 10° 1016790 347 X 1072 5.63 1.89 0.95 (0.06)
12 3% 103 2576306  1.03 X 1072 5.62 1.89 0.99 (0.05)
16 5% 102 1017902 434 x 1073 5.62 1.88 0.98 (0.06)
20 25 99493 223 x 107? 5.61 1.91 1.00 (0.10)
28 10 109075 8.11 x 107* 5.62 1.87 1.07 (0.10)
32 10 163097  5.40 x 107* 5.62 1.89 0.99 (0.08)
40 5 158658 277 X 107* 5.62 1.91 0.97 (0.09)
64 2 260020 6.79 X 1073 5.62 1.88 1.04 (0.09)
80 1 254321 347 X 1073 5.62 1.92 1.02 (0.06)
100° 1 99360 1.77 X 107° 5.63 1.88 0.95 (0.11)

%Energy interval igE| < 0.89.

718



VOLUME 79, NUMBER 4

28 JLy 1997

PHYSICAL REVIEW LETTERS

0.8

0.6

P(s) 04

02+

L=12
L=64

L=100
Wigner surmise
Poisson

0.0

FIG. 1. Level spacing distributiorP(s) for various system
sizes at the critical disordé¥,.. Dash-dotted line isPxz (s).
Full line is derivative ofl.(s) from interpolation formula (3).

s = 10A. Thus, some fraction of the spacings< 10A

is not taken into account, causing the faster decay
In our calculations the interval is wide enough
covering approximately half of all of the eigenvalues
However, such a choice aof does not lead to the un-

P.(s).

tainties. This implies the equivalence of averaging over
the spectrum and over the random potential. Indeed, due
to diminishing the spacing with the size < L3, the aver-
aging for smaller cubes is performed over many samples,
while for our largest system& = 80 and 100 a single
realization without ensemble averaging is even sufficient
to get similar distributions with comparable precision.
For numerically describing a crossover between small and
large s, we propose an explicit form of the new interpola-

tion function

I(s) = exdp — /2 + (Acs)?] 3)
with a coefficientu =~ 2.21. Although we do not pro-
vide a rigorous analytical proof, it gives the excellent fit
all over the range of the computed spacings. The corre-
spondingP(s) shown in Fig. 1 fulfills the both normaliza-
tion conditions.

To study the finite-size scaling behavior ofs) for
large s, we extended the calculations to other degrees of
?e disordeW close toW, for various system sizes. The
Olalculations were performed for an ensemble of different

'samples. The number of samples for each given pair of
"L and W was chosen such that, = 10° spacings were
obtained. We have also carefully checked the sensitivity
df the results to the number of realizations. No change

desirable mixture of the extended and the localized state
was observed within the error bars when increasing the

This is due to a peculiarity of the box distribution of the
It follows from the localization phase

diagram{W., E.} [15,22], that the critical disordeW.
is almost independent of the energy whién| < 6. In

site energies,.

system size on the expense of the number of realizations
and vice versa. By increasin§ the spacing distribution
for fixed L changes continuously fronfy (s) to Ip(s)
(Fig. 3). The steepness of the crossover depend&.on

order to investigate how the width of the energy inter-
For larger sizeslI(s) changes faster between the two

val influences the level statistics, we calculatésl) for
E/A = 10%, 10° and 10*, provided that all levels satisfy

the critical conditionl. < &(g) « |e/E. — 1|7”. The re-
sults were practically the same within the statistical uncer
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limiting regimes. AtW, = 16.4 the spacing distribution
has almost the same asymptotic form for &Alfrom 5 to
100. This reflects the universality of the level statistics
exactly at the MIT [1].

For finite L the distributioni(s) exhibits scaling in the
vicinity of W.. Within the critical regionL < &(W), it
is reasonable to assume that the linear slope 6€shis
governed by the one-parameter scaling la\V,L) =
fIL/&(W)]. Figure 4 shows the disorder dependence of

8 8
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1 1
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FIG. 2. Critical probability of neighboring spacings(s).
Solid line is Eq. (2) witha = 1. Dash-dotted line is the power FIG. 3. Probability/(s) for L = 6 and28 atW = 12, 14, 15,

law with @« = 1.24 from Eq. (1). Dashed and dotted lines are 16, 16.4, 17, 18, and 20 shown consecutively from the left to
the right. Dashed (dotted) line is the Wigner (Poisson) limit.

Iw(s) andIp(s), respectively.
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