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Microscopic Approach to the Lorentz Cavity in Dielectrics
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We develop a microscopic scattering theory for the electromagnetic response of dielectrics. We
derive the Lorentz-Lorenz relation for a hard-sphere fluid and for hard-sphere mixtures by summing
rigorously the relevant class of multiple scattering events which incorporates particle correlations. The
derivation neither makes use of macroscopic concepts such as local and reaction fields nor does it
invoke decoupling schemes for high-order correlation functions. [S0031-9007(97)03660-0]

PACS numbers: 41.20.Jb, 42.25.Bs, 78.20.Ci

Understanding the relation between macroscopic eled=q. (2) fore,
tromagnetic response as observed in experiments and
microscopic properties such as electronic, atomic, and e=14+ Pa+~ 3)
molecular polarizabilities still presents a challenge. This 1 — 3pa

fundamental problem is relevant at any frequency of the

electromagnetic field—from electrostatics up to the x-ray PParently, the local-field concept involves terms up to
region. Its solution is fierce as it involves a genuinelNfinite order in the density. The LLR is not expected

many-body problem. Different forms of matter—metals, 10 P& €xact, and one would like to know which many-
semiconductors, insulators, liquids, plasmas, gases, arl&_ipdy contributions are included and which are not. To get

mesoscopic structures—and different ranges of frequerfOre insight into the range of validity of the LLR, many
cies are expected to require their own specific solutiondlternative or simplified derivations of the original result
)Py Lorentz have been presented over the past century.

of superior quality. We mention only a few: Born and Wolf [2], Debye [4],
Within the framework of standard response theory, thénsager [5], De Goede and Mazur [6]. Van Kranendonk
dielectric constant is given by and Sipe [7] and Schnatterly_ an_d Tarrio [8] have reviewed
a large number of these derivations. Unfortunately, these
e=1+pa, (1) approaches rely on the concept of a local field and
in which « is the polarizability andp the density of then apply macroscopic arguments based on Maxwell's
the microscopic constituents. (As the polarizabilty equations. The theoretical base of the LLR is therefore
depends on the angular frequeneyof the electric field, hard to assess, and thus difficult to improve on. We know
e will also depend orw. The obvious dependence on of no exact microscopic derivation of the LLR, and this
 in all equations will be dropped. We use rationalized| etter is aimed at filling this gap. Microscopic derivations
Gaussian units andy = 1.) Lorentz demonstrated that of the second-order terrﬁnpzaz of (3) employing point
a dramatic improvement over Eq. (1) can be obtainedlipoles have already been obtained by Kuz'ratral. [9]
at all frequencies bypostulating the existence of a and Moriceet al. [10].
dynamic “local field.” This local field differs from the The electric field seen by one particular point dipole
macroscopic field by a correction factor: the Lorentzcan be written schematically as [2]
local-field factor. In its simplest form this factor is given

by (¢ + 2)/3. Applying this local-field correction to the E,=E,. + Z E;, (4)
dielectric constant results in iEi 7
e+ 2
e=1+pa 3 (2)  where E;, is the incoming field andE;; is the field

received by dipole radiated from dipolg. Equation (4)

in itself is exact, but the summation over dipoles very
difficult to carry out. In the conventional derivations (see,
e.g., [2]) it is assumed that the positions of thdipoles

an be replaced by a continuous dipole density. With this
assumption the summation turns into an integration,

which is the Lorentz-Lorenz relation (LLR). Historically,

the LLR refers to formula (2) when solved explicitly for

the polarizability«. Its zero-frequency version is often

called the Clausius-Mossotti equation [2]. The succes
of the LLR in predicting the dielectric constant, in many
cases within 1% accuracy, is impressive [3].

From the point of view of many-body physics, the LLR !
is quite surprising as can best be appreciated by solving E(r) = Einc(r) + f driE(r,ry). )
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To include some remnant of the particle correlations this Inside a medium, the propagat&(r;,r,) will be
integration is performed by excluding a small sphere—different from the free propagator. For liquids and gases
the Lorentz cavity—around the origin (indicated by thewe have to average this quantity over the disorder,
prime). The electric fields in Eq. (5) induce polarizationsusually performed by averaging over the positions of the
that can be represented by tbe dielectric dyaglic scatterers [15KG(ry,r3)) = G(r; — ry). To calculate its
Fourier transformG(k), it is expedient to introduce the

e~ I =pal - pawzf drGo(r) - [e = I]. (6) self-energy® (k) defined by
in which I is the unit dyadic an the free-space Green'’s 1
function, to be spemfled below, glgnlfylng th_e propagatlc_)n G(k) = w1 — K21 + kk — 3(k) 9)
of the scattered light waves. This self-consistent equation
for £ can be solved and leads to the LLR. This type of%(k) characterizes the response of the medium and
intuitive derivation hasitherto been the sole theoretical vanishes in empty space. The Green’s funct®ncan
foundation for the LLR. One of the shortcomings of thesebe expanded into a series of scattering events that can
derivations of the LLR is readily identified: All light be classified either as singly or multiply connected [15].
scattering in which more than two correlated particles aré\ singly connected event can, in contrast to a multiply
involved has been replaced by contributions in which onlyconnected event, be written as the product of lower-
products of pair correlations occur. order events. The expedience of the self-en&ggrises

The following derivation of the LLR takes into account from the fact that it represents solely multiply connected
all particle correlations rigorously and, indeed, up toscattering events. The dielectric functiefk) is related
infinite order. We shall also be able to generalize thgo the self-energy by
microscopic theory for the dielectric response to mixtures 3 (k)
of hard spheres, and we will derive the LLR for mixtures ek)=1-—5".

[3], which is closely related to the Maxwell-Garnett The widely used independent scattering approximation

formula [11]. = S
, i . . (ISA) amounts to keeping i only the term which is
The basis of our approach is multiple-scattering theoryIowest order in the density. This means that light can

The generic microscopic building block that we consider . . !
is the finite-size hard sphere with radiis(being much scatter from as many particles as many times as possible,

. ... but never more than once from the same particle. In
smaller than the wavelength of light) and polarizability - . . . -
N .2 addition, particle correlations are not considered within
a [12]. Our analysis includes the case of the point

the ISA. The ISA self-energy reads

(10)

dipole [13].

The dielectric function originates from the collective W _ _ [ "
response of dipoles excited by the incoming field and the o o) =p | dRit(rr), D
rescattered fields of all other dipoles. The scattering of the = —paw?dr —r)l, (12)

three electric field components from positionto position o

r» by a particle located R, is completely described by SO that%)(k) = —paw’L. The superscript inx"
the + matrix, denoted by the second-rank tenggr;,r,).  indicates that only the first-order terms in the dengity
For a spherical Rayleigh scatterer thisatrix is given by ~ are accounted for. Equation (11) implies that ISA gives

o ) - | R for the dielectric function
t;(ry, i — - B R ’
(ri,r) » (r; — r2)6( r ) e =1+ pal, (13)

_ . . _ () which is equivalent to Eq. (1) following from response
in which ¢ denotes the Heaviside step function ané=  theory. To improve on this result we go beyond ISA and
47rR3/3 is the volume of the scatterer. The step functionjnclude particle correlations.

ensures that the scattering takes place only when the light | gt gm(1,...,m) be the probability distribution for ob-
has propagated into the scatterer, and the delta functiogbrvingm particles at position®,...,R,,. These dis-
signifies that in the Rayleigh limit, as in the Born approxi- triputions can be decomposed by employing the so-called

mation, the wave only interacts once with the scatteringrreducible correlation functions,(1,. .., m) according to
potential. From now org;(r) = (R — |[r — R;|). The

free-field propagato6(r;,r;) = Go(r; — r,) describes gi(l) =m(1) =1,
how the electric field propagates framto r, [14], g2(12) = hi(Dhi(2) + hy(12),
explior) n . (14)
Go(r) = — ?[P(wr) (I — tf) + Q(wr)if] g3(123) = 1 + h(D)h(23) + hi(2Q)ha(13)

+ hi1(3)ha(12) + h3(123),

+ I 1) 8
3w? x), (8) and so on. The irreducible correlation functibyp con-
in which (f¢);; = r;r;/r?, and P, Q are known func- tains that part of,, that cannot be written as a linear com-
tions [14]. bination of products of correlation functioris of lower
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order. As aresult, the terms in the sum represent all pogparticles in the functions,, is important. The remaining
sible partitions of them arguments ofg,,. Within the three-particle correlations to be included are thus

ISA, all h, are taken to vanish fom > 1. Except for 303 w2

h1, the physical content and mathematical structure of the 30 = p73 f dR; f dR; ] dRy

irreducible correlation function’s,,’s are highly nontrivial. v

Fortunately, for classical hard spheres [16] khgs are re- X [y (j)halik) + h3(ijk)]0;(r)8;(r)0;(r1),
quired only for those coordinates in configuration space for

which allm spheres overlap, to be referred to as the forbid- (19)
denregion. Correlation functions in this region will be de- —H pla’e’ _ plaiw? (20)
noted by a union signg\) andhy. Obviously,g¥ = 0 for ) 9

m > 1, from which one findsiy’ = —1, h5 = +2, and . . _ N U Upeopy .
hy = —6. The computation of high-order becomes in which H = h\(j)hy (ik) + h3 (ijk) = 1. The third-

quickly cumbersome. The correlation functions (14) en_order contribution agrees again with the LLR, when the

) . : latter is expanded to third order in the density.
ter when the Green’s functio@, expanded as a series of L S ()
; . . " The combination of:, (n = m) that appears ir2'"™,
scattering events, is averaged over the particle positions; )
. P . denoted byH,,, is the sum of those products that enter
One can then unambiguously distinguish singly and mulin multiply connected diagrams involving, t, and
tiply connected events. For the self-energy only the latte Py 9 r

. i ) . “Gyp. Inspection shows that the factorization of volume
should be considered: All relevant particle correlations in X . .
i ) integrations effected in Egs. (17) and (19) applies to all
G are then automatically taken into account.

Within ISA, the scattering from particleto particlej orders. Hence, the self-energy to all orders becomes

has been counted agGot; in the Green’s functioiG for L ) o (_ ﬂ)’”
all possible positions of particlesandj. To account for 2= —paw Z Hn1 3 ) (21)
the forbidden region up to second ordergdnwe include

m=0

in 3 the following contribution: The first three orders have been determined, witgre=
1,H, = —1, andH3 = 1.
SO0, — 1) = pi dr; f dr, f dR; f dR; Now we focus solely on the properties Hf,, and we
shall prove that
X hay(ij)ti(r;,r3) - Go(rs — ry) H, = (—1)"*", 22)
Fti(rym). 15 The proof entails the generating function
For Rayleigh scatterers the range bf(ij) is always 1
smaller than the wavelength, and the dominant contribu- F(A) = W (23)
T =1 i

tion to the integral comes from the delta function in the
Green'’s function (8). The other contributions are of order_et us expand the generating function in powers of
(wR)? and will be neglected. Using Eq. (7) shows thatA, F(A) = 1 + > 1 A"pn. The coefficientp,, is the

3 — 1) = 3®@8(r; — ry)I with linear combination of all possible ordered products of
@ plalw? . . H; with indices adding up ton. These terms can be
X0 == f dR; f dRjhy(ij)0;(r1)6;(r1), associated one-to-one with the diagrams of all possible

16 scattering events involving: particles, thereforep,, =
s 9 (16) g, Finally, one obtains that
pratw A A
= h ] 0;(r;)dR; ] 0;(r)dR;, (17 i
32 2 1 JE0dRs. (1) FO =1+ > gl =1+A.  (24)
22,2
— _ p-aTw (18) m=1
3 ’ Using Egs. (23) and (24) yields Eq. (22). Let us remind

where h,(ij) is only required in the forbidden region. the reader that the proof requires infinite-order particle
This result agrees with the LLR if the latter is expandedcorrelation functions.
to second order in the density. The remarkable property thal,,+; = H,—, X H,
Subsequent contributions due to correlations turn oushows that uncontrolled approximations, such as the one
to obey X" (r; — ry) = 2™&(r; — ry)I. The third- involved in the transition from Eq. (4) to Eq. (5), may
order contribution follows from the three-particle eventsturn out to give correct answers. The decoupling property
t;Got;Got, in which particlesi, j, and k overlap. By of H,, looks deceivingly simple. To appreciate its mean-
considering2® we have already taken into account ing, it is worthwhile to rewrite théZ correlation functions
the following singly connected three-particle events inin terms of the irreducible particle correlatiohs For in-
G: m(ij)tiGot;Gotr and hy(jk)t;Got;Goty, but not stance, for three-particle correlations the exact decoupling
yet hy(ik)t;Got;jGot, and h3(ijk)t;Got;Got, which are  property impliesh§J = —3h§J — hf. This result can be
multiply connected events. Note that the order of thecontrasted with the well-known (Kirkwood) superposition
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approximation [17)3(123) = g2(12)g2(23)g2(13), which ~ research program of the Stichting FOM which is finan-
would imply for the irreducible correlation function in the cially supported by NWO.
forbidden regimery = (h5))® + 3(h5)2. Note added—Our derivation is valid for finite fre-
We have used hard-core interaction potentials. It is exquency. The limit to zero frequency can be taken in our
pected that this is not a severe limitation. Any realistictheory. It was pointed out to us that a derivation for pre-
intermolecular potential will have an inner region that con-cisely zero frequency actually exists [21]. In that paper,
sists of a hard repulsive part. As most of the polarizabilitythe values for the correlations functiotg, have been
of the molecule will be localized within this region, our obtained in an alternative way. We thank B. U. Felderhof
treatment can be employed for this case as well. for drawing our attention to his work.
We can apply our microscopic theory to mixtures. To
describe a mixture of typd and typeB hard Rayleigh
spheres, we first look at the contributions to the dielectric [1] H.A. Lorentz, Wiedem. Ann, 641 (1880).

tensor that are linear ip, and contain all orders gb. [2] M. Born and E. Wolf, Principles of Optics(Pergamon,
To obtain the events linear ip, we just look at allB Oxford, 1980), p. 98, 6th ed.

events in which we are allowed to replace anmeatrix of  [3] C.J.F. BéttcherTheory of Electric PolarizatiorElsevier,
B by ar matrix of A. This changes only the multiplicity Amsterdam, 1973), Vol. I.

of the contributions, as, for instance, the two-particle [4] P. Debye, Phys. 713, 97 (1912);The Collected Papers of
contributiont,Gotz has now become distinguishable, but Peter J. W. Debyénterscience, New York, 1954), p. 173.
equal in size, from thezGot, contribution. The resulting,  [5] L. Onsager, J. Am. Chem. So68, 1486 (1936).

more complicated, series can again be summed exactly®l J- de Goede and P. Mazur, Physica (Amsterda8)568
and givespaaa/(1 — %pBaB)z, and can, for instance, be (1972).

L . 7] J. van Kranendonk and J.E. Sipe, Brogress in Optics
used to calculate the medium-enhanced absorption of small XV, edited by E. Wolf (North-Holland, Amsterdam, 1977).

concentrations oA in B. In fact, it is straightforward [8] S.E. Schnatterly and C. Tarrio, Rev. Mod. Phgd, 619

to include all orders ofp4 and pg, and the LLR forAB (1992).
mixtures becomes [9] V.L. Kuz’'min, V.P. Romanov, and L.A. Zubkov, Phys.
- pacs + ppap Rep.24_8 71 (1994): .
eap =1+ 1 - 1 1 ) I, (25) [10] O. Morice, Y. Castin, and J. Dalibard, Phys. Rev.54
3PAXA T 3 PBAB 3896 (1995).
which, if the densities are transformed into volume[11] J.C. Maxwell-Garnett, Philos. Trans. R. Soc.283 385
fractions, represents essentially the well-known Maxwell- (1904).
Garnett formula. [12] The condition of small spherical scatterers can be relaxed

Having established a microscopic framework that by to any small scatterers. _Provided they are randomly
summing a class of events generates the LLR, on orlentated,“the results obtamgd apply to them as well.
can now ponder over systematic extensions. Events an(S] Al.gléaetsgenduk and B.A. van Tiggelen, Phys. RT(, 143
included [n our theory are the events in which the sam 4] SN W()-::iglhofer, Am. J. Phys57, 455 (1989).
scatter_er is visited more thanionce, _often called depende 5] U. Frisch,Probabilistic Methods in Applied Mathematics,
scattering, as well as correlations with a range comparable  ggited by A.T. Bharucha-Reid (Academic, New York,
to or larger than the wavelength. Dependent scattering  1968), Vols. | and II.
becomes important Whehoa ~ 1. [16] For quantum particles, our assertion that, elg(y, =

Dependent scattering for twpoint particles has been 0) = —1 does not apply: For free bosong,(r;, =
considered in the static limit [9] and near an internal 0) = 1 above the critical temperature. As shown in
resonance. In the latter regime these contributions appear [10], however, the second-ord&® does not depend on
to become important [18]. Near internal resonances, one _ /2(r2 = 0). _ o
can consider the modification of the Einstein coefficienf17] J: P. Hansen and I. R. McDonaltheory of Simple Liquids
for spontaneous emission, where local-field concepts pIaMS] (Academic, London, 1976).

. e B.A. van Tiggelen, A. Lagendijk, and A. Tip, J. Phys.
an important role [19]. Recently, the Lorentz local-field Condens. Matte2, 7653 (1990).

corrections to nonlinear optical susceptibilities have beer[hg] S.M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. Lett.
calculated [20]. At present, we are not able to extend our  gg 3698 (1992). ’ ’

theory to include these nonlinear effects. [20] J.E. Sipe and R.W. Boyd, Phys. Rev.4&, 1614 (1992).
We are grateful to Rodney Loudon and Frank Schuurf21] B.U. Felderhof, G.W. Ford, and E.G.D. Cohen, J. Stat.
mans for fruitful discussions. This work is part of the Phys.33, 241 (1983).
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