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Microscopic Approach to the Lorentz Cavity in Dielectrics
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We develop a microscopic scattering theory for the electromagnetic response of dielectrics. We
derive the Lorentz-Lorenz relation for a hard-sphere fluid and for hard-sphere mixtures by summing
rigorously the relevant class of multiple scattering events which incorporates particle correlations. The
derivation neither makes use of macroscopic concepts such as local and reaction fields nor does it
invoke decoupling schemes for high-order correlation functions. [S0031-9007(97)03660-0]
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Understanding the relation between macroscopic ele
tromagnetic response as observed in experiments
microscopic properties such as electronic, atomic, a
molecular polarizabilities still presents a challenge. Th
fundamental problem is relevant at any frequency of t
electromagnetic field—from electrostatics up to the x-ra
region. Its solution is fierce as it involves a genuin
many-body problem. Different forms of matter—metals
semiconductors, insulators, liquids, plasmas, gases,
mesoscopic structures—and different ranges of freque
cies are expected to require their own specific solutio
However, in 1880 Lorentz [1] developed a generic theo
of superior quality.

Within the framework of standard response theory, t
dielectric constant́ is given by

´ ­ 1 1 ra , (1)

in which a is the polarizability andr the density of
the microscopic constituents. (As the polarizabilitya

depends on the angular frequencyv of the electric field,
´ will also depend onv. The obvious dependence on
v in all equations will be dropped. We use rationalize
Gaussian units andc0 ­ 1.) Lorentz demonstrated that
a dramatic improvement over Eq. (1) can be obtain
at all frequencies bypostulating the existence of a
dynamic “local field.” This local field differs from the
macroscopic field by a correction factor: the Loren
local-field factor. In its simplest form this factor is given
by s´ 1 2dy3. Applying this local-field correction to the
dielectric constant results in

´ ­ 1 1 ra
´ 1 2

3
, (2)

which is the Lorentz-Lorenz relation (LLR). Historically,
the LLR refers to formula (2) when solved explicitly for
the polarizabilitya. Its zero-frequency version is often
called the Clausius-Mossotti equation [2]. The succe
of the LLR in predicting the dielectric constant, in man
cases within 1% accuracy, is impressive [3].

From the point of view of many-body physics, the LLR
is quite surprising as can best be appreciated by solv
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Eq. (2) for´,

´ ­ 1 1 ra
1

1 2
1
3 ra

. (3)

Apparently, the local-field concept involves terms up
infinite order in the density. The LLR is not expecte
to be exact, and one would like to know which many
body contributions are included and which are not. To g
more insight into the range of validity of the LLR, man
alternative or simplified derivations of the original resu
by Lorentz have been presented over the past centu
We mention only a few: Born and Wolf [2], Debye [4]
Onsager [5], De Goede and Mazur [6]. Van Kranendo
and Sipe [7] and Schnatterly and Tarrio [8] have review
a large number of these derivations. Unfortunately, the
approaches rely on the concept of a local field a
then apply macroscopic arguments based on Maxwe
equations. The theoretical base of the LLR is therefo
hard to assess, and thus difficult to improve on. We kno
of no exact microscopic derivation of the LLR, and th
Letter is aimed at filling this gap. Microscopic derivation
of the second-order term1

3 r2a2 of (3) employing point
dipoles have already been obtained by Kuz’minet al. [9]
and Moriceet al. [10].

The electric field seen by one particular point dipolei
can be written schematically as [2]

Ei ­ Einc 1
X
jfii

Eij , (4)

where Einc is the incoming field andEij is the field
received by dipolei radiated from dipolej. Equation (4)
in itself is exact, but the summation over dipolesj is very
difficult to carry out. In the conventional derivations (se
e.g., [2]) it is assumed that the positions of thej dipoles
can be replaced by a continuous dipole density. With th
assumption the summation turns into an integration,

Esrd ­ Eincsrd 1
Z 0

dr1Esr, r1d . (5)
© 1997 The American Physical Society 657
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To include some remnant of the particle correlations t
integration is performed by excluding a small sphere
the Lorentz cavity—around the origin (indicated by t
prime). The electric fields in Eq. (5) induce polarizatio
that can be represented by the dielectric dyadic´,

´ 2 I ­ raI 2 rav2
Z 0

drG0srd ? f´ 2 Ig , (6)

in whichI is the unit dyadic andG0 the free-space Green’
function, to be specified below, signifying the propagati
of the scattered light waves. This self-consistent equa
for ´ can be solved and leads to the LLR. This type
intuitive derivation hashitherto been the sole theoretica
foundation for the LLR. One of the shortcomings of the
derivations of the LLR is readily identified: All ligh
scattering in which more than two correlated particles
involved has been replaced by contributions in which o
products of pair correlations occur.

The following derivation of the LLR takes into accou
all particle correlations rigorously and, indeed, up
infinite order. We shall also be able to generalize
microscopic theory for the dielectric response to mixtu
of hard spheres, and we will derive the LLR for mixtur
[3], which is closely related to the Maxwell-Garne
formula [11].

The basis of our approach is multiple-scattering theo
The generic microscopic building block that we consid
is the finite-size hard sphere with radiusR (being much
smaller than the wavelength of light) and polarizabil
a [12]. Our analysis includes the case of the po
dipole [13].

The dielectric function originates from the collectiv
response of dipoles excited by the incoming field and
rescattered fields of all other dipoles. The scattering of
three electric field components from positionr1 to position
r2 by a particle located atRi is completely described by
the t matrix, denoted by the second-rank tensortisr1, r2d.
For a spherical Rayleigh scatterer thist matrix is given by

tisr1, r2d ­ 2
av2

y
dsr1 2 r2dusR 2 jr1 2 RijdI ,

(7)
in which u denotes the Heaviside step function andy ­
4pR3y3 is the volume of the scatterer. The step functi
ensures that the scattering takes place only when the
has propagated into the scatterer, and the delta func
signifies that in the Rayleigh limit, as in the Born approx
mation, the wave only interacts once with the scatter
potential. From now on,̂uisrd ; usR 2 jr 2 Rijd. The
free-field propagatorG0sr1, r2d ­ G0sr1 2 r2d describes
how the electric field propagates fromr1 to r2 [14],

G0srd ­ 2
expsivrd

4pr
fPsvrd sI 2 r̂r̂d 1 Qsvrdr̂r̂g

1
I

3v2
dsrd , (8)

in which sr̂r̂dij ­ rirjyr2, and P, Q are known func-
tions [14].
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Inside a medium, the propagatorGsr1, r2d will be
different from the free propagator. For liquids and gas
we have to average this quantity over the disord
usually performed by averaging over the positions of t
scatterers [15]:kGsr1, r2dl ; Gsr1 2 r2d. To calculate its
Fourier transformGskd, it is expedient to introduce the
self-energySskd defined by

Gskd ­
1

v2I 2 k2I 1 kk 2 Sskd
. (9)

Sskd characterizes the response of the medium a
vanishes in empty space. The Green’s functionG can
be expanded into a series of scattering events that
be classified either as singly or multiply connected [15
A singly connected event can, in contrast to a multip
connected event, be written as the product of lowe
order events. The expedience of the self-energyS arises
from the fact that it represents solely multiply connecte
scattering events. The dielectric function´skd is related
to the self-energy by

´skd ­ I 2
Sskd
v2 . (10)

The widely used independent scattering approximati
(ISA) amounts to keeping inS only the term which is
lowest order in the density. This means that light ca
scatter from as many particles as many times as possi
but never more than once from the same particle.
addition, particle correlations are not considered with
the ISA. The ISA self-energy reads

Ss1dsr1 2 r2d ­ r
Z

dRitisr1, r2d , (11)

­ 2rav2dsr1 2 r2dI , (12)

so that Ss1dskd ­ 2rav2I. The superscript inSs1d

indicates that only the first-order terms in the densityr

are accounted for. Equation (11) implies that ISA give
for the dielectric function

´s1d ­ I 1 raI , (13)

which is equivalent to Eq. (1) following from respons
theory. To improve on this result we go beyond ISA an
include particle correlations.

Let gms1, . . . , md be the probability distribution for ob-
servingm particles at positionsR1, . . . , Rm. These dis-
tributions can be decomposed by employing the so-cal
irreducible correlation functionshms1, . . . , md according to

g1s1d ­ h1s1d ­ 1 ,

g2s12d ­ h1s1dh1s2d 1 h2s12d ,

g3s123d ­ 1 1 h1s1dh2s23d 1 h1s2dh2s13d
(14)

1 h1s3dh2s12d 1 h3s123d ,

and so on. The irreducible correlation functionhm con-
tains that part ofgm that cannot be written as a linear com
bination of products of correlation functionsh of lower
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order. As a result, the terms in the sum represent all p
sible partitions of them arguments ofgm. Within the
ISA, all hm are taken to vanish form . 1. Except for
h1, the physical content and mathematical structure of
irreducible correlation functionshm ’s are highly nontrivial.
Fortunately, for classical hard spheres [16] thehm’s are re-
quired only for those coordinates in configuration space
which allm spheres overlap, to be referred to as the forb
den region. Correlation functions in this region will be d
noted by a union sign:g<

m andh<
m . Obviously,g<

m ­ 0 for
m . 1, from which one findsh<

2 ­ 21, h<
3 ­ 12, and

h<
4 ­ 26. The computation of high-orderh<

m becomes
quickly cumbersome. The correlation functions (14) e
ter when the Green’s functionG, expanded as a series o
scattering events, is averaged over the particle positio
One can then unambiguously distinguish singly and m
tiply connected events. For the self-energy only the la
should be considered: All relevant particle correlations
G are then automatically taken into account.

Within ISA, the scattering from particlei to particlej
has been counted astiG0tj in the Green’s functionG for
all possible positions of particlesi andj. To account for
the forbidden region up to second order inr, we include
in S the following contribution:

Ss2dsr1 2 r2d ­ r2
Z

dr3

Z
dr4

Z
dRi

Z
dRj

3 h2sijdtisr1, r3d ? G0sr3 2 r4d

? tjsr4, r2d . (15)

For Rayleigh scatterers the range ofh2sijd is always
smaller than the wavelength, and the dominant contri
tion to the integral comes from the delta function in th
Green’s function (8). The other contributions are of ord
svRd2 and will be neglected. Using Eq. (7) shows th
Ss2dsr1 2 r2d ­ Ss2ddsr1 2 r2dI with

Ss2d ­
r2a2v2

3y2

Z
dRi

Z
dRjh2sijdûisr1dûjsr1d ,

(16)

­
r2a2v2

3y2
h<

2

Z
ûisr1ddRi

Z
ûjsr1ddRj , (17)

­ 2
r2a2v2

3
, (18)

where h2sijd is only required in the forbidden region
This result agrees with the LLR if the latter is expand
to second order in the density.

Subsequent contributions due to correlations turn
to obey Ssmdsr1 2 r2d ­ Ssmddsr1 2 r2dI. The third-
order contribution follows from the three-particle even
tiG0tjG0tk in which particlesi, j, and k overlap. By
considering Ss2d we have already taken into accou
the following singly connected three-particle events
G: h2sijdtiG0tjG0tk and h2s jkdtiG0tjG0tk , but not
yet h2sikdtiG0tjG0tk and h3sijkdtiG0tjG0tk which are
multiply connected events. Note that the order of t
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particles in the functionshm is important. The remaining
three-particle correlations to be included are thus

Ss3d ­
r3a3v2

9y3

Z
dRi

Z
dRj

Z
dRk

3 fh1s jdh2sikd 1 h3sijkdgûisr1dûjsr1dûksr1d ,

(19)

­ H3
r3a3v2

9
­

r3a3v2

9
, (20)

in which H3 ; h1s jdh<
2 sikd 1 h<

3 sijkd ­ 1. The third-
order contribution agrees again with the LLR, when th
latter is expanded to third order in the density.

The combination ofhn sn # md that appears inSsmd,
denoted byHm, is the sum of those products that ente
in multiply connected diagrams involvingh, t, and
G0. Inspection shows that the factorization of volum
integrations effected in Eqs. (17) and (19) applies to
orders. Hence, the self-energy to all orders becomes

S ­ 2rav2
X̀

m­0

Hm11

µ
2

ra

3

∂m

. (21)

The first three orders have been determined, whereH1 ­
1, H2 ­ 21, andH3 ­ 1.

Now we focus solely on the properties ofHm, and we
shall prove that

Hm ­ s21dm11. (22)

The proof entails the generating function

Fsld ;
1

1 2
P`

i­1 liHi
. (23)

Let us expand the generating function in powers
l, Fsld ; 1 1

P`
m­1 lmpm. The coefficientpm is the

linear combination of all possible ordered products
Hi with indices adding up tom. These terms can be
associated one-to-one with the diagrams of all possi
scattering events involvingm particles, thereforepm ­
g<

m . Finally, one obtains that

Fsld ­ 1 1
X̀

m­1

lmg<
m ­ 1 1 l . (24)

Using Eqs. (23) and (24) yields Eq. (22). Let us remin
the reader that the proof requires infinite-order partic
correlation functions.

The remarkable property thatHm11 ­ Hm2n 3 Hn

shows that uncontrolled approximations, such as the o
involved in the transition from Eq. (4) to Eq. (5), ma
turn out to give correct answers. The decoupling prope
of Hm looks deceivingly simple. To appreciate its mea
ing, it is worthwhile to rewrite theH correlation functions
in terms of the irreducible particle correlationsh. For in-
stance, for three-particle correlations the exact decoupl
property impliesh<

3 ­ 23h<
2 2 h3

1. This result can be
contrasted with the well-known (Kirkwood) superpositio
659
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approximation [17]g3s123d ­ g2s12dg2s23dg2s13d, which
would imply for the irreducible correlation function in th
forbidden regimeh<

3 ­ sh<
2 d3 1 3sh<

2 d2.
We have used hard-core interaction potentials. It is

pected that this is not a severe limitation. Any realis
intermolecular potential will have an inner region that co
sists of a hard repulsive part. As most of the polarizabi
of the molecule will be localized within this region, ou
treatment can be employed for this case as well.

We can apply our microscopic theory to mixtures. T
describe a mixture of typeA and typeB hard Rayleigh
spheres, we first look at the contributions to the dielec
tensor that are linear inrA and contain all orders ofrB.
To obtain the events linear inrA we just look at allB
events in which we are allowed to replace onet matrix of
B by a t matrix of A. This changes only the multiplicity
of the contributions, as, for instance, the two-parti
contributiontAG0tB has now become distinguishable, b
equal in size, from thetBG0tA contribution. The resulting
more complicated, series can again be summed exa
and givesrAaAys1 2

1
3 rBaBd2, and can, for instance, b

used to calculate the medium-enhanced absorption of s
concentrations ofA in B. In fact, it is straightforward
to include all orders ofrA and rB, and the LLR forAB
mixtures becomes

´AB ­ I 1
rAaA 1 rBaB

s1 2 1
3 rAaA 2 1

3 rBaBd
I , (25)

which, if the densities are transformed into volum
fractions, represents essentially the well-known Maxw
Garnett formula.

Having established a microscopic framework that
summing a class of events generates the LLR,
can now ponder over systematic extensions. Events
included in our theory are the events in which the sa
scatterer is visited more than once, often called depen
scattering, as well as correlations with a range compar
to or larger than the wavelength. Dependent scatte
becomes important when13 ra ø 1.

Dependent scattering for twopoint particles has been
considered in the static limit [9] and near an intern
resonance. In the latter regime these contributions ap
to become important [18]. Near internal resonances,
can consider the modification of the Einstein coefficie
for spontaneous emission, where local-field concepts p
an important role [19]. Recently, the Lorentz local-fie
corrections to nonlinear optical susceptibilities have be
calculated [20]. At present, we are not able to extend
theory to include these nonlinear effects.

We are grateful to Rodney Loudon and Frank Schu
mans for fruitful discussions. This work is part of th
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research program of the Stichting FOM which is fina
cially supported by NWO.

Note added.—Our derivation is valid for finite fre-
quency. The limit to zero frequency can be taken in o
theory. It was pointed out to us that a derivation for pr
cisely zero frequency actually exists [21]. In that pape
the values for the correlations functionsHm have been
obtained in an alternative way. We thank B. U. Felderh
for drawing our attention to his work.
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