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Control of High-Dimensional Chaos in Systems with Symmetry
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We demonstrate the successful control of a periodic orbit associated with two unstable manifolds in
a system comprised of two coupled diode resonators. It is shown that due to symmetries generic to
spatially extended systems a one-parameter control is not possible. A novel method of determining the
local Liapunov exponents utilizingrthogonal controlas well as geometric information is presented.
[S0031-9007(97)03517-5]

PACS numbers: 05.45.+b, 07.50.Ek

The ability to control unstable periodic orbits embeddedgram of this system, which has been previously studied in
within a chaotic system by applying small corrections todetail [10], is given in Fig. 1. It is comprised of a par-
an accessible parameter was demonstrated in a semiralel combination of two diode resonators in series with
paper by Ott, Grebogi, and Yorke (OGY) [1]. Numerousa resistor, which allows for coupling and is driven sinu-
examples of controlling low-dimensional chaos in physicalsoidally. As the drive voltage is increased, the system
systems [2] followed, but the experimental application ofperiod doubles once and then undergoes a Hopf bifurca-
chaos control techniques to orbits exhibiting more thartion into a quasiperiodic state. The period doubling can
one unstable direction remains a formidable challengdead to either an in-phase or a (symmetry breaking) out-
Extending the OGY method to high-dimensional system®f-phase period-2 orbit. Because of the particular way
with the ultimate goal to control spatiotemporal chaosof coupling, our system strongly favors the latter one.
proves a particularly difficult task. General theories forA number of unstable low- and high-period orbits exist-
controlling unstable periodic orbits in dimensions are ing on top of the out-of-phase period-2 state have been
presented in Ref. [3]. However, all of these asre  successfully controlled [9,11]. We stress the qualitative
parameter schemes; multiparameter control is addresseddiifference between the control of these states and the ho-
Ref. [4]. mogeneous, in-phase orbits. The Hopf bifurcation and the

In this Letter we show that there exists a very importantassociated complex eigenvalues do not occur for homoge-
class of systems with multiple unstable directions forneous, in-phase orbits.
which one-parameter control algorithms generally will We are targeting the period-1 state [12] which ex-
not succeed and that multiple controllers are necessatyibits two real, unstable eigenvalues. The only acces-
[5]. The assumed symmetries naturally arise in extendedible system parameters are the drive amplitude and the
systems with spatial symmetries as well as in arrays obiases of the diodes. An OGY-based, one-parameter con-
coupled oscillators. We therefore expect our results to b&ol scheme could therefore either globally perturb the
applicable to dynamical systems as diverse as reactiocommondrive/bias [13] or apply perturbations to the
diffusion equations [6], models of animal gait transitionsbias of one of the individual resonators. Both choices
[7], and synchronized chaotic oscillators [8]. are not feasible: Applying the control locally implies

We present experimental confirmation of these predicthat the respective other resonator is controlled only
tions for a system of two coupled diode resonators. Thehrough the coupling which in general is weak. When the
stabilization of a periodic orbit exhibiting two unstable,

real eigenvalues was achieved implementing two indepen-
dent controllers, since a one-parameter approach proved to Z? ;

be impossible. Following previous work [9], the volume f

in “feedback-gain-space” is mapped out, the boundaries

of which correspond to curves of neutral stability. Along

these boundaries, both (resulting) eigenvalues are of modu- Controller | | Controller
lus one, and we are able to determine the local Liapunov |
exponents using geometrical information. We also present
an alternative method in which control is applied along the v
(orthogonal) eigendirections of the system. Disabling one

controller provides a direct way of measuring the Liapunoy/G: 1. ‘The double diode resonator circuit. The coupling
t alona the respective eigenvector is provided by the resistoR. Each controller measures the
exponen g p g : deviation of the peak current through the diode from a set

Experimental results—The experimental results are point and proportionally alters the respective dc bias every drive
obtained for two coupled diode resonators. A circuit dia-cycle.
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common drive is chosen as control parameter, the fixetrol signals. These are then combined to control the diode
point moves along one of the eigenvectors, namely, theesonators.

diagonal of the Poincaré section. It is well known that In this way, the controllers are decoupled, which is
control schemes varying only one parameter can succeedflected in the rectangular shape of the controlled area in
only if its change affects all directions [9]. This “control- Fig. 2(b). For perfectly matched resonators, one would
lability condition” [14] will be violated by any coupled expect a square instead of a rectangle. Simulations on the
oscillator system which exhibits a similar symmetry as themodel confirm that even a slight mismatch in the individual
diode resonators presented here. Control of the periodklements results in a significant difference in the respective
1 orbit was achieved by implementing two independentanges over which control can be maintained.

controllers. The control method used here is described in Orthogonal control is also the basis for a novel, conve-
Ref. [15]. For each resonator, deviations from a respecnient method of determining the local Liapunov exponents.
tive set point are fed back to modulate the bias of the inThe data for Fig. 4 were collected via this approach by con-
dividual diode. Since there are two feedback strengths ttrolling both eigendirections, then disabling one controller
vary, the pairs which lead to successful control fill a two-and subsequently recording the system’s trajectory. The
dimensional volume in “gain space.” Intuitively, for un- rate of the exponential departure from the fixed point—
coupled, identical resonators, the shape is expected to lwentrived to be along an uncontrolled (unstable) eigenvec-
a square. For finite coupling and not perfectly matchedor—yields the corresponding eigenvalue of the stability
elements, the experimentally obtained data are given imatrix. We find the slope associated with the out-of-phase
Fig. 2(a). Note the lower curved corner along the diagoperiod-2 statep ~ 2.3, to be significantly larger than the
nal, which is well described by the hyperbolic boundarieseffective in-phase instabilityy ~ 1.5.

in the model (to be developed below). The agreement Coupled maps—The diode resonator is known to be
with the theory is seen to deteriorate at higher gains. Thenodeled quite well by a one-dimensional quadratic map
model predicts the less marked curvature in the upper cof10]. The system of linearly coupled logistic maps [17]

ner as well as an early loss of control for high gains in .
the presence of noise and a slight mismatch in system Xni1 = rxa(l = x0) + €(yn = x0),

parameters. Yn+1 = i’z}’n(l - yn) + G(xn - yn)

In our system it is straightforward to identify the two . . .

: e . models the resistively coupled pair of diode resonators
eigendirections [16]. The sum and the difference of theemarkabl well. On increasing the parametersi first
individual currents through the diodes correspond to thé y ' g P ¢

respective orthogonal projections of the two-dimensionaf:lj'tgdtgogggz ar}ghzuggsql?ﬁntISB{rfeorI]IO,:'r\]'Si;hergugi'igig??éc
state vector. Using this information, we implememnt ) piIng g prop

P , and the parameters in the model correspond to the
thogonal control,applying independent feedback control €, an . L . : -
to each (one-dimensional) eigendirection. The experig”ve amplitude/individual bias of the diodes. Far=

mental setup for this is shown in Fig. 3. The control sig—r2 - brl th? syst_erp s complti'[elyesymmt_el:[rr:c 3” |tsb.state
nals are summed and subtracted and go through a variab{&"'32'€Sxn+1 = S, r1,1r2) = f(%, r). The Jacobian

gain stage to provide the in-phase and out-of-phase Coﬁprrespon'ding to the periqd-l fixed poif = (xs,xy)
reflects this symmetry and is of the form

l=<a b), witha =r — € — 2rxp,b = €.
= a

b
—] . . . .

& °r . | e The real eigenvalues and eigenvectors of this Jacobian
- \ e o & o oo
< *F 4 200 | ° [18] are(a — b,a + b),((—1,1),(1,1)). The symmetry
s |7 ¢ 3 re ® of the system will be prevalent if one would try to
S N ¢ ° * control the system using the common “drive,” i.e., the
Q 4 .y ¢ " ®ee o o o oo° commonr as control parameter, in Whigh casg/ar
g ARG will be parallel to one of the eigenvectorfsf/ar)||(1,1).

i "’} | ‘ L Ib | ‘ | In contrast, varying only one of the’'s will shift the

8 4 8
gain1 (arb. units)

FIG. 2. Region over which control is maintained as a function
of the two gains. (a) Each diode resonator was independently
controlled using occasional proportional feedback control [15].

The coupling gives rise to hyperbolic boundaries. The shown

hyperbolas (solid lines) are analytical results from the modeFIG. 3. Orthogonal control applied to the diode resonators
assuming the eigenvalues from Fig. 1. (b) The two controllerdDR). The summing and subtracting of the control signals is
are decoupled byrthogonal controlresulting in a rectangular depicted. The two resulting signals directly manipulate the two
volume. eigendirections.
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where A = (e; — €3)*/(ey + €2)%, B = epig/esman and
f(A,B)=1+ A — 2B + 2AB + B> + AB>. Note
thatA and B, and therefore the expressions for thes,
depend only on theatios of the gainse;, and are thus
independent of any specific scaling factors. Applying
Eqg. (1) to the experimental data from Fig. 2(a) yields
Alx ~ (—=1.9,—2.4) compared toA;, = (—1.5,-2.3)
from Fig. 4. The rather poor agreement between the two
different methods can be attributed to the aforementioned
amplification of noise and system mismatches when high
gains are employed.
Generalization to N dimensions:It is well known that

' | ' | symmetries which lead to degenerate eigenvalues preclude

0 4 8 one-parameter control schemes. In this Letter we showed

time (drive cycles) that the presence of a different class of symmetries results

FIG. 4. Exponential departure of the peak currént from in the need for multiple controllers. We will now prove
the fixed point along the two unstable eigendirections. In eacﬁhat the controllability condition [14] will be violated for

graph the system was constrained to one eigendirection throughy System exh_ibiting SUCh_Spatial symmetries. For the
orthogonal control (see text), yielding eigenvalues/slopes of 2.3ake of simplicity we restrict ourselves t§ coupled

(diamonds) and 1.5 (circles). (identical) one-dimensional systems. Assume the local
dynamics to be governed by some mapping function
fixed point parallel to the coordinate axes, which is ax,+1 = f(x,, ), with an adjustable parameterand fixed
“right” direction, i.e., not perpendicular to one of the point x;. (Higher dimensional local elements can be
eigenvectors, but the trade-off being that the second mafeated in an analogous manner.) We exclusively consider
will be controlled solely through the coupling which in normalizedcoupling functionsG(x'~*,...,x'**) = G(i)
general will be rather weak [19]. Therefore, the gainwith correlation length:
on the input from the 2nd controller will be very high, P P i—A QAN P -
rendering the system highly susceptible to noise and e = [0, r) + G 2T = Fi(r, X)),
measurement errors. )
Employing two independent controllers in the experi-,

IIIlII|

1

AT (arb. units)

mental setup corresponds to varying the tws indepen- * — ,.... N, with the normalization property

dently, i.e.,ar;' = g; - [(x,); — x7] with respective gains . . . _

¢;. The modified Jacobian is %WGW 9Ly, = %[aGU)/ dxi ]y, = const  (3)
~ [a— e b L B o for all i,j = 1,...,N. All systems exhibiting transla-
L= < b a— e ) with e; = xp(1 = xp) - i tional invariance obey this condition [21]. '

and with Aia = %[Za e — et Any attempt to stabilize the uniform solutiox, =

JA7 T (e — e2)?] as eigenvalues. The lines of xf'involves the .Iinearization ofF arou.nd t.he f_ixed
constant\’s are hyperbolas [20]: point. Thg special symmetry of cqupllng |de_nt|cal
5 elements is reflected in the resulting Jacobian =
. witha=a—c. [0f(x,r)/0x]6;; + 0G(x'A,...,x"*")/ax/ , evaluated
ey —a at the fixed point. Because of property (3), the sum of
The controllable area is therefore bounded by the twahe row elements is equal for all rows:
hyperbolas corresponding to = —1 (upper boundary)
and ¢ =1 (lower boundary). It can be shown that the Zjik = Zij = const (4)
volume is nonzero as long &s< 1. k k
A method of calculating the local instabilities in the foralli,j = 1,...,N. Thus, theN-dimensional diagonal
case of a one-parameter control scheme was presentedvactor(l, 1, ..., 1) is one of the eigenvectors. If one were
Ref. [9]. We were also able to calculate the eigenvalueso choose the “common drive” as control parameter, i.e.,
associated with the unstable period-1 orbit from theglobally perturbr, the fixed point would be shifted along
geometry of the controlled area in Fig. 2(a). let,e;)  the space diagonal, i.e., along one of the eigenvectors of
be one of the corners, ané,,; and ey, the two the Jacobian
intersections with the diagonal. Then we obtain for the oF af af
two eigenvalues P <— '

AMp=c&Sep=a -+

>~(1,1,...,1). (5)

L)

ar ar’ 7 or
=14+ 4B - B? A= —1 — 4B -1 1 Therefore, the controllability condition [14] is violated for
b f(A,B)’ 2 f(A,B)’ (1) all systems with the symmetry properties (4) and (5).
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In real experimental situations, the local elements will[10] Z. Su, R.W. Rollins, and E.R. Hunt, Phys. Rev.48,

never be identical and (symmetry breaking) noise will
always be present. Nevertheless, we exgéét/dr) to
be “almost” parallel to one of the eigenvectors, so that a
one-parameter scheme would still be impractical.

In conclusion, we demonstrate that a one-paramet

control in a very important class of high-dimensional 13]

dynamical systems is not possible. We experimentally

2698 (1989).

[11] E.R. Hunt and G.A. Johnson, iRroceedings of the

2nd Experimental Chaos Conferenf@/orld Scientific,
Singapore, 1995).

E,[rlZ] The period-1 state is a special case of a geneoatoge-

neousperiod+# orbit.
The effective drive amplitude is roughly proportional to
Vdrive/Vbias [lO]

Stab'“ze a pel’IOdIC Ol’blt aSSOC|ated W|th two unStable[14] This condition can be formulated in terms of Orthogo_

manifolds utilizing two independent controllers. The
results are confirmed using a model of two coupled maps
and generalized t&¥ dimensions.
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Again, this is a rather general consequence of the
symmetries. In a variety of different systems it will
be possible to easily identify the eigenvectors, as long
as the Jacobian is a circulant matrix [22]. This renders
orthogonal control broadly applicable.
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The Jacobian of anjipomogeneougperiod# fixed point
will be of this form. This implies that onlyreal
eigenvalues are associated with homogeneous states, i.e.,
the Hopf bifurcation is possible only via an underlying
out-of-phaseperiod-2 fixed point. This particular Jacobian
is a two-dimensional circular matrix [22] and thus fulfills
this property (4).

We remark that Dinget al.[3] asymmetricallycoupled
two Duffing oscillators in order to demonstrate their
control technique. The coupling of the “uncontrolled”
oscillator to the one which parameter was varied was
twice as strong as the other way around.

A similar result is obtained in the case of slightly
different oscillators:  Take the two diagonal elements
to be different a's, namelyqa; and a,, then, the lines

of constantA’s are still hyperbolasiA;, = ¢ < e; =
2

LAIQ"“)IZ:_&]With&,‘:a,‘_C.

The coupling function for, e.g., a diffu-
sively coupled map lattice x,+[i] = f(x,[i]) +
e(x,[i — 1] — 2x,[i] + xu[i + 1)) would be

G(i) = e(x,[i — 1] — 2x,[i] + x,[i + 1]), thus obeying
property (3).

Circulant Matrices, edited by P.J. Davis (Chelsea Pub-
lishing, New York, 1994).



